Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organelle-specific initiation of cell death

Abstract

In a majority of pathophysiological settings, cell death is not accidental — it is controlled by a complex molecular apparatus. Such a system operates like a computer: it receives several inputs that inform on the current state of the cell and the extracellular microenvironment, integrates them and generates an output. Thus, depending on a network of signals generated at specific subcellular sites, cells can respond to stress by attemptinwg to recover homeostasis or by activating molecular cascades that lead to cell death by apoptosis or necrosis. Here, we discuss the mechanisms whereby cellular compartments — including the nucleus, mitochondria, plasma membrane, endoplasmic reticulum, Golgi apparatus, lysosomes, cytoskeleton and cytosol — sense homeostatic perturbations and translate them into a cell-death-initiating signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General organization of organelle-specific responses to stress.
Figure 2: Major pathways of cell death initiation by the nucleus.
Figure 3: Major pathways of cell death initiation by the plasma membrane.
Figure 4: Major pathways of cell death initiation by lysosomes.

Similar content being viewed by others

References

  1. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009).

    CAS  PubMed  Google Scholar 

  3. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    CAS  PubMed  Google Scholar 

  4. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011).

    CAS  PubMed  Google Scholar 

  5. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    CAS  PubMed  Google Scholar 

  6. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    CAS  PubMed  Google Scholar 

  7. Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer 12, 587–598 (2012).

    CAS  PubMed  Google Scholar 

  8. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    CAS  PubMed  Google Scholar 

  9. Bieging, K. T. & Attardi, L. D. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol. 22, 97–106 (2012).

    CAS  PubMed  Google Scholar 

  10. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    CAS  PubMed  Google Scholar 

  11. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  12. Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung, Y. M. et al. FOXO3 signalling links ATM to the p53 apoptotic pathway following DNA damage. Nat. Commun. 3, 1000 (2012).

    PubMed  Google Scholar 

  15. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864–877 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843–846 (2004).

    CAS  PubMed  Google Scholar 

  18. Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352–1354 (2002).

    CAS  PubMed  Google Scholar 

  19. Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. J. Cell Biol. 185, 291–303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-κB pathway. EMBO J. 26, 197–208 (2007).

    CAS  PubMed  Google Scholar 

  21. Ando, K. et al. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol. Cell 47, 681–693 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293–301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011).

    CAS  PubMed  Google Scholar 

  24. Schutze, S., Tchikov, V. & Schneider-Brachert, W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 655–662 (2008).

    PubMed  Google Scholar 

  25. Mehlen, P. & Bredesen, D. E. Dependence receptors: from basic research to drug development. Sci. Signal. 4, mr2 (2011).

    PubMed  Google Scholar 

  26. Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    CAS  PubMed  Google Scholar 

  28. Chen, L. et al. CD95 promotes tumour growth. Nature 465, 492–496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell Biol. 6, 97–105 (2004).

    CAS  PubMed  Google Scholar 

  30. Wang, L., Du, F. & Wang, X. TNF-αinduces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    CAS  PubMed  Google Scholar 

  31. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55–65 (2014).

    CAS  PubMed  Google Scholar 

  32. Guenebeaud, C. et al. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol. Cell 40, 863–876 (2010).

    CAS  PubMed  Google Scholar 

  33. Mille, F. et al. The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat. Cell Biol. 11, 739–746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Delloye-Bourgeois, C. et al. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. PLoS Biol. 11, e1001623 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Notomi, S. et al. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage. PLoS ONE 8, e53338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Agopyan, N., Head, J., Yu, S. & Simon, S. A. TRPV1 receptors mediate particulate matter-induced apoptosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L563–572 (2004).

    CAS  PubMed  Google Scholar 

  37. Pal, S., Hartnett, K. A., Nerbonne, J. M., Levitan, E. S. & Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J. Neurosci. 23, 4798–4802 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Staton, T. L. et al. Dampening of death pathways by schnurri-2 is essential for T-cell development. Nature 472, 105–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahr, B., Robert-Hebmann, V., Devaux, C. & Biard-Piechaczyk, M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology 1, 12 (2004).

    PubMed  PubMed Central  Google Scholar 

  40. Into, T. et al. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell. Microbiol. 6, 187–199 (2004).

    CAS  PubMed  Google Scholar 

  41. Voisin, T., El Firar, A., Rouyer-Fessard, C., Gratio, V. & Laburthe, M. A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J. 22, 1993–2002 (2008).

    CAS  PubMed  Google Scholar 

  42. Lappano, R. & Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 10, 47–60 (2011).

    CAS  PubMed  Google Scholar 

  43. Tait, S. W. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    CAS  PubMed  Google Scholar 

  45. Weinmann, M. et al. Molecular ordering of hypoxia-induced apoptosis: critical involvement of the mitochondrial death pathway in a FADD/caspase-8 independent manner. Oncogene 23, 3757–3769 (2004).

    CAS  PubMed  Google Scholar 

  46. Sermeus, A. et al. Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. PLoS ONE 7, e47519 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sherer, T. B. et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J. Neurosci. 23, 10756–10764 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Montero, J., Dutta, C., van Bodegom, D., Weinstock, D. & Letai, A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ. 20, 1465–1474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Haynes, C. M. & Ron, D. The mitochondrial UPR - protecting organelle protein homeostasis. J. Cell Sci. 123, 3849–3855 (2010).

    CAS  PubMed  Google Scholar 

  50. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M. & Haynes, C. M. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587–590 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Besch, R. et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 119, 2399–2411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ishibashi, O. et al. Short RNA duplexes elicit RIG-I-mediated apoptosis in a cell type- and length-dependent manner. Sci. Signal. 4, ra74 (2011).

    PubMed  Google Scholar 

  55. El Maadidi, S. et al. A novel mitochondrial MAVS/caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J. Immunol. 192, 1171–1183 (2014).

    CAS  PubMed  Google Scholar 

  56. Lei, Y. et al. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS ONE 4, e5466 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Brandizzi, F. & Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14, 382–392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lane, J. D. et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J. Cell Biol. 156, 495–509 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lafont, E. et al. Caspase-mediated inhibition of sphingomyelin synthesis is involved in FasL-triggered cell death. Cell Death Differ. 17, 642–654 (2010).

    CAS  PubMed  Google Scholar 

  60. How, P. C. & Shields, D. Tethering function of the caspase cleavage fragment of Golgi protein p115 promotes apoptosis via a p53-dependent pathway. J. Biol. Chem. 286, 8565–8576 (2011).

    CAS  PubMed  Google Scholar 

  61. Kepp, O. et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 24, 311–318 (2013).

    CAS  PubMed  Google Scholar 

  62. Yamaguchi, H. & Wang, H. G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279, 45495–45502 (2004).

    CAS  PubMed  Google Scholar 

  63. Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007).

    CAS  PubMed  Google Scholar 

  65. Morishima, N., Nakanishi, K. & Nakano, A. Activating transcription factor-6 (ATF6) mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. J. Biol. Chem. 286, 35227–35235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103 (2000).

    CAS  PubMed  Google Scholar 

  67. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818–822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sandow, J. J. et al. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis. Cell Death Differ. 21, 475–480 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312, 572–576 (2006).

    CAS  PubMed  Google Scholar 

  71. Lisbona, F. et al. BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Mol. Cell 33, 679–691 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  73. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Burikhanov, R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138, 377–388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Austgen, K., Johnson, E. T., Park, T. J., Curran, T. & Oakes, S. A. The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress. Nat. Cell Biol. 14, 87–92 (2012).

    CAS  Google Scholar 

  77. Kang, M. J., Chung, J. & Ryoo, H. D. CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat. Cell Biol. 14, 409–415 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 (2003).

    CAS  PubMed  Google Scholar 

  79. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Petrasek, J. et al. STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    CAS  Google Scholar 

  82. Namba, T. et al. CDIP1–BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress. Cell Rep. 5, 331–339 (2013).

    CAS  PubMed  Google Scholar 

  83. De Maria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277, 1652–1655 (1997).

    CAS  PubMed  Google Scholar 

  84. Cheng, J. P. et al. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. Cell Death Dis. 1, e82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293 (1998).

    CAS  PubMed  Google Scholar 

  86. Dumitru, R. et al. Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol. Cell 46, 573–583 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tu, S. et al. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat. Cell Biol. 8, 72–77 (2006).

    CAS  PubMed  Google Scholar 

  88. Tsai, F. M., Shyu, R. Y. & Jiang, S. Y. RIG1 suppresses Ras activation and induces cellular apoptosis at the Golgi apparatus. Cell. Signal. 19, 989–999 (2007).

    CAS  PubMed  Google Scholar 

  89. Nogueira, E. et al. SOK1 translocates from the Golgi to the nucleus upon chemical anoxia and induces apoptotic cell death. J. Biol. Chem. 283, 16248–16258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou, J. et al. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol. Cell. Biol. 29, 4167–4176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Aits, S. & Jaattela, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).

    CAS  PubMed  Google Scholar 

  92. Groth-Pedersen, L., Ostenfeld, M. S., Hoyer-Hansen, M., Nylandsted, J. & Jaattela, M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res. 67, 2217–2225 (2007).

    CAS  PubMed  Google Scholar 

  93. Zou, J. et al. Poly IC triggers a cathepsin D- and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis. Immunity 38, 717–728 (2013).

    CAS  PubMed  Google Scholar 

  94. Hwang, J. J., Lee, S. J., Kim, T. Y., Cho, J. H. & Koh, J. Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 28, 3114–3122 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006).

    CAS  PubMed  Google Scholar 

  96. Li, J. H. & Pober, J. S. The cathepsin B death pathway contributes to TNF plus IFN-γ-mediated human endothelial injury. J. Immunol. 175, 1858–1866 (2005).

    CAS  PubMed  Google Scholar 

  97. Broker, L. E. et al. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res. 64, 27–30 (2004).

    PubMed  Google Scholar 

  98. Huang, W. C. et al. Glycogen synthase kinase-3β mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. J. Pharmacol. Exp. Ther. 329, 524–531 (2009).

    CAS  PubMed  Google Scholar 

  99. Arnandis, T. et al. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. Cell Death Differ. 19, 1536–1548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gyrd-Hansen, M. et al. Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol. Cell. Biol. 26, 7880–7891 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. 197, 1323–1334 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wille, A. et al. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells. Biol. Chem. 385, 665–670 (2004).

    CAS  PubMed  Google Scholar 

  103. Heinrich, M. et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ. 11, 550–563 (2004).

    CAS  PubMed  Google Scholar 

  104. Droga-Mazovec, G. et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J. Biol. Chem. 283, 19140–19150 (2008).

    CAS  PubMed  Google Scholar 

  105. Chaitanya, G. V., Steven, A. J. & Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 8, 31 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Cuvillier, O. et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803 (1996).

    CAS  PubMed  Google Scholar 

  107. Conus, S., Pop, C., Snipas, S. J., Salvesen, G. S. & Simon, H. U. Cathepsin D primes caspase-8 activation by multiple intra-chain proteolysis. J. Biol. Chem. 287, 21142–21151 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kurz, T., Gustafsson, B. & Brunk, U. T. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J. 273, 3106–3117 (2006).

    CAS  PubMed  Google Scholar 

  109. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419, 939–944 (2002).

    CAS  PubMed  Google Scholar 

  111. Wen, Y. D. et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4, 762–769 (2008).

    CAS  PubMed  Google Scholar 

  112. Yamashima, T. et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13, 791–800 (2003).

    CAS  PubMed  Google Scholar 

  113. Sahara, S. & Yamashima, T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem. Biophys. Res. Commun. 393, 806–811 (2010).

    CAS  PubMed  Google Scholar 

  114. Luke, C. J. et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130, 1108–1119 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010).

    CAS  PubMed  Google Scholar 

  116. Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 68, 6623–6633 (2008).

    CAS  PubMed  Google Scholar 

  117. Appelqvist, H. et al. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. Am. J. Pathol. 178, 629–639 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao, M., Eaton, J. W. & Brunk, U. T. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett. 485, 104–108 (2000).

    CAS  PubMed  Google Scholar 

  119. Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10, 481–494 (2009).

    CAS  PubMed  Google Scholar 

  120. Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat. Cell Biol. 13, 303–309 (2011).

    CAS  PubMed  Google Scholar 

  121. Fischer, U., Janicke, R. U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 10, 76–100 (2003).

    CAS  PubMed  Google Scholar 

  122. Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574 (1997).

    CAS  PubMed  Google Scholar 

  123. Vilas, G. L. et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc. Natl Acad. Sci. USA 103, 6542–6547 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Moriceau, S. et al. Coronin-1 is associated with neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. J. Immunol. 182, 7254–7263 (2009).

    CAS  PubMed  Google Scholar 

  125. Rovini, A., Savry, A., Braguer, D. & Carre, M. Microtubule-targeted agents: when mitochondria become essential to chemotherapy. Biochim. Biophys. Acta 1807, 679–688 (2011).

    CAS  PubMed  Google Scholar 

  126. Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    CAS  PubMed  Google Scholar 

  127. Puthalakath, H. et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293, 1829–1832 (2001).

    CAS  PubMed  Google Scholar 

  128. Li, R., Moudgil, T., Ross, H. J. & Hu, H. M. Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ. 12, 292–303 (2005).

    CAS  PubMed  Google Scholar 

  129. Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc. Natl Acad. Sci. USA 104, 3787–3792 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pinto, V. I., Senini, V. W., Wang, Y., Kazembe, M. P. & McCulloch, C. A. Filamin A protects cells against force-induced apoptosis by stabilizing talin- and vinculin-containing cell adhesions. FASEB J. 28, 453–463 (2014).

    CAS  PubMed  Google Scholar 

  131. Raval, G. N. et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 22, 6194–6203 (2003).

    CAS  PubMed  Google Scholar 

  132. Perez-Mancera, P. A. et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486, 266–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schwickart, M. et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  134. Lei, K. & Davis, R. J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl Acad. Sci. USA 100, 2432–2437 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. VanBrocklin, M. W., Verhaegen, M., Soengas, M. S. & Holmen, S. L. Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. Cancer Res. 69, 1985–1994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kuo, W. C., Yang, K. T., Hsieh, S. L. & Lai, M. Z. Ezrin is a negative regulator of death receptor-induced apoptosis. Oncogene 29, 1374–1383 (2010).

    CAS  PubMed  Google Scholar 

  137. Kirschnek, S. et al. Phagocytosis-induced apoptosis in macrophages is mediated by up-regulation and activation of the Bcl-2 homology domain 3-only protein Bim. J. Immunol. 174, 671–679 (2005).

    CAS  PubMed  Google Scholar 

  138. Giannakakou, P. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol. 2, 709–717 (2000).

    CAS  PubMed  Google Scholar 

  139. Posey, S. C. & Bierer, B. E. Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. J. Biol. Chem. 274, 4259–4265 (1999).

    CAS  PubMed  Google Scholar 

  140. Chua, B. T. et al. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat. Cell Biol. 5, 1083–1089 (2003).

    CAS  PubMed  Google Scholar 

  141. Klamt, F. et al. Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat. Cell Biol. 11, 1241–1246 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wabnitz, G. H. et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 1, e58 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3, E255–263 (2001).

    CAS  PubMed  Google Scholar 

  144. Schenck, A. et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133, 486–497 (2008).

    CAS  PubMed  Google Scholar 

  145. Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Noack, J. et al. TLR9 agonists induced cell death in Burkitt's lymphoma cells is variable and influenced by TLR9 polymorphism. Cell Death Dis. 3, e323 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Young, M. M. et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem. 287, 12455–12468 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Han, J. et al. A complex between Atg7 and caspase-9: a novel mechanism of cross-regulation between autophagy and apoptosis. J. Biol. Chem. 289, 6485–6497 (2013).

    PubMed  PubMed Central  Google Scholar 

  149. Jin, Z. et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137, 721–735 (2009).

    CAS  PubMed  Google Scholar 

  150. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologise to the scientists working in this area for being unable to cite here the huge amount of top-quality literature dealing with the organelle-specific initiation of cell death. Authors are supported by the Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

Author information

Authors and Affiliations

Authors

Contributions

L.G. and J.M.B-S.P contributed equally to this work. L.G. and G.K. jointly supervised this work.

Corresponding authors

Correspondence to Lorenzo Galluzzi or Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Bravo-San Pedro, J. & Kroemer, G. Organelle-specific initiation of cell death. Nat Cell Biol 16, 728–736 (2014). https://doi.org/10.1038/ncb3005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing