Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p53 mutations in cancer

Abstract

In the past fifteen years, it has become apparent that tumour-associated p53 mutations can provoke activities that are different to those resulting from simply loss of wild-type tumour-suppressing p53 function. Many of these mutant p53 proteins acquire oncogenic properties that enable them to promote invasion, metastasis, proliferation and cell survival. Here we highlight some of the emerging molecular mechanisms through which mutant p53 proteins can exert these oncogenic functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of mechanisms through which mutant p53 functions.
Figure 2: Mutant p53 binds to numerous proteins to enhance or inhibit their function.
Figure 3: Mutant p53 inhibits the function of p63.
Figure 4: Modifications of mutant p53.

Similar content being viewed by others

References

  1. Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9, 701–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Goh, A. M., Coffill, C. R. & Lane, D. P. The role of mutant p53 in human cancer. J. Pathol. 223, 116–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Lozano, G. The oncogenic roles of p53 mutants in mouse models. Curr. Opin. Gen. Dev. 17, 66–70 (2007).

    Article  CAS  Google Scholar 

  6. Oren, M. & Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect. Biol. 2, a001107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strano, S. et al. Mutant p53 proteins: between loss and gain of function. Head Neck 29, 488–496 (2007).

    Article  PubMed  Google Scholar 

  8. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  PubMed  Google Scholar 

  9. Dittmer, D. et al. Gain of function mutations in p53. Nat. Genet. 4, 42–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, D. P., Song, H. & Xu, Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29, 949–956 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Bullock, A. N. et al. Thermodynamic stability of wild-type and mutant p53 core domain. Proc. Natl Acad. Sci. USA 94, 14338–14342 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thukral, S. K., Lu, Y., Blain, G. C., Harvey, T. S. & Jacobsen, V. L. Discrimination of DNA binding sites by mutant p53 proteins. Mol. Cell. Biol. 15, 5196–5202 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ludwig, R. L., Bates, S. & Vousden, K. H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16, 4952–4960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strano, S. et al. Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212–2219 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Weisz, L., Oren, M. & Rotter, V. Transcription regulation by mutant p53. Oncogene 26, 2202–2211 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, E. & Deppert, W. Transcriptional activities of mutant p53: when mutations are more than a loss. J. Cell. Biochem. 93, 878–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Donzelli, S. et al. Oncogenomic approaches in exploring gain of function of mutant p53. Curr. Genom. 9, 200–207 (2008).

    Article  CAS  Google Scholar 

  21. Vaughan, C. A. et al. p53 mutants induce transcription of NF-kappaB2 in H1299 cells through CBP and STAT binding on the NF-kappaB2 promoter and gain of function activity. Arch. Biochem. Biophys. 518, 79–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Dell'Orso, S. et al. ChIP-on-chip analysis of in vivo mutant p53 binding to selected gene promoters. Omics 15, 305–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Will, K., Warnecke, G., Wiesmuller, L. & Deppert, W. Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc. Natl Acad. Sci. USA 95, 13681–13686 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bargonetti, J., Chicas, A., White, D. & Prives, C. p53 represses Sp1 DNA binding and HIV-LTR directed transcription. Cell. Mol. Biol. 43, 935–949 (1997).

    CAS  PubMed  Google Scholar 

  25. Chicas, A., Molina, P. & Bargonetti, J. Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem. Biophys. Res. Commun. 279, 383–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Sampath, J. et al. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem. 276, 39359–39367 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Do, P. M. et al. Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 26, 830–845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stambolsky, P. et al. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17, 273–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Agostino, S. et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, K., Ling, S. & Lin, W. C. TopBP1 Mediates Mutant p53 Gain of Function through NF-Y and p63/p73. Mol. Cell. Biol. 31, 4464–4481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Valenti, F. et al. Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle 10, 4330–4340 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Neilsen, P. M. et al. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2, 1203–1217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strano, S. et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J. Biol. Chem. 277, 18817–18826 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Girardini, J. E. et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20, 79–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Martynova, E. et al. Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 3, 132–143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Borellini, F. & Glazer, R. I. Induction of Sp1-p53 DNA-binding heterocomplexes during granulocyte/macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1. J. Biol. Chem. 268, 7923–7928 (1993).

    CAS  PubMed  Google Scholar 

  38. Gualberto, A. & Baldwin, A. S., Jr. p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J. Biol. Chem. 270, 19680–19683 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Adorno, M. et al. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137, 87–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Noll, J. E. et al. Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 31, 2836–2848 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Ano Bom, A. P. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287, 28152–28162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7, 285–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 9, 573–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Solomon, H. et al. Various p53 mutant proteins differently regulate the Ras circuit to induce a cancer-related gene signature. J. Cell Sci. 125, 3144–3152 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Restle, A. et al. Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 36, 5362–5375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coffill, C. R. et al. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep. 13, 638–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–991 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tomasini, R. et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677–2691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muller, P. A. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    Article  PubMed  Google Scholar 

  51. Wilhelm, M. T. et al. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev. 24, 549–560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Romano, R. A. et al. DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139, 772–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, H. O. et al. A dominant negative form of p63 inhibits apoptosis in a p53-independent manner. Biochem. Biophys. Res. Commun. 344, 166–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ravni, A., Tissir, F. & Goffinet, A. M. DeltaNp73 transcription factors modulate cell survival and tumor development. Cell Cycle 9, 1523–1527 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Kalo, E. et al. Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol. Cell. Biol. 27, 8228–8242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martello, G. et al. A microRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Muller, P. A. et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene (2012).

  58. Rainero, E. et al. Diacylglycerol kinase alpha controls RCP-dependent integrin trafficking to promote invasive migration. J. Cell Biol. 196, 277–295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Melino, G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ. 18, 1487–1499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Irwin, M. S. Family feud in chemosensitvity: p73 and mutant p53. Cell Cycle 3, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Strano, S. & Blandino, G. p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle 2, 348–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Di Como, C. J., Gaiddon, C. & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19, 1438–1449 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murphy, K. L., Dennis, A. P. & Rosen, J. M. A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J. 14, 2291–2302 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Dulloo, I. & Sabapathy, K. Transactivation-dependent and -independent regulation of p73 stability. J. Biol. Chem. 280, 28203–28214 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Neilsen, P. M. et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene http://dx.doi.org/10.1038/onc.2012.305 (2012).

  66. Dong, P. et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b–ZEB1 axis. Oncogene http://dx.doi.org/10.1038/onc.2012.334 (2012).

  67. Tucci, P. et al. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc. Natl Acad. Sci. USA 109, 15312–15317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sigal, A., Matas, D., Almog, N., Goldfinger, N. & Rotter, V. The C-terminus of mutant p53 is necessary for its ability to interfere with growth arrest or apoptosis. Oncogene 20, 4891–4898 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Yan, W. & Chen, X. Identification of GRO1 as a critical determinant for mutant p53 gain of function. J. Biol. Chem. 284, 12178–12187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matas, D. et al. Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J. 20, 4163–4172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schilling, T. et al. Interference with the p53 family network contributes to the gain of oncogenic function of mutant p53 in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 394, 817–823 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Coffill, C. R. et al. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep. 13, 638–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morselli, E. et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7, 3056–3061 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Gogna, R., Madan, E., Kuppusamy, P. & Pati, U. Re-oxygenation causes hypoxic tumor regression through restoration of p53 wild-type conformation and post-translational modifications. Cell Death Disease 3, e286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sasaki, M., Nie, L. & Maki, C. G. MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J. Biol. Chem. 282, 14626–14634 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Cross, B. et al. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J. Biol. Chem. 286, 16018–16029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Milner, J. & Watson, J. V. Addition of fresh medium induces cell cycle and conformation changes in p53, a tumour suppressor protein. Oncogene 5, 1683–1690 (1990).

    CAS  PubMed  Google Scholar 

  79. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Suh, Y. A. et al. Multiple stress signals activate mutant p53 in vivo. Cancer Res. 71, 7168–7175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartek, J. et al. Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6, 1699–1703 (1991).

    CAS  PubMed  Google Scholar 

  84. Zerbini, L. F., Wang, Y., Correa, R. G., Cho, J. Y. & Libermann, T. A. Blockage of NF-kappaB induces serine 15 phosphorylation of mutant p53 by JNK kinase in prostate cancer cells. Cell Cycle 4, 1247–1253 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Matsumoto, M., Furihata, M. & Ohtsuki, Y. Posttranslational phosphorylation of mutant p53 protein in tumor development. Med. Mol. Morphol. 39, 79–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Gillotin, S., Yap, D. & Lu, X. Mutation at Ser392 specifically sensitizes mutant p53H175 to mdm2-mediated degradation. Cell Cycle 9, 1390–1398 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Yap, D. B. et al. Ser392 phosphorylation regulates the oncogenic function of mutant p53. Cancer Res. 64, 4749–4754 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Perez, R. E. et al. Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J. Cell. Physiol. 225, 394–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilcken, R., Wang, G., Boeckler, F. M. & Fersht, A. R. Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proc. Natl Acad. Sci. USA 109, 13584–13589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yan, W. et al. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene http://dx.doi.org/10.1038/onc.2012.81 (2012).

  92. Li, D., Marchenko, N. D. & Moll, U. M. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18, 1904–1913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kravchenko, J. E. et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl. Acad. Sci. USA 105, 6302–6307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu, X., Vazquez, A., Levine, A. J. & Carpizo, D. R. Allele-specific p53 mutant reactivation. Cancer Cell 21, 614–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V. & Wiman, K. G. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell. Biol. 19, 3395–3402 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. 3, 632–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Friedler, A. et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl Acad. Sci. USA 99, 937–942 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Demma, M. et al. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53. J. Biol. Chem. 285, 10198–10212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lambert, J. M. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, A. L. et al. Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J. Biol. Chem. 274, 34924–34931 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Lanyi, A. et al. 'Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain. Oncogene 16, 3169–3176 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Cancer Research UK and AICR for supporting our work. We also would like to apologise to all authors we have not been able to cite owing to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, P., Vousden, K. p53 mutations in cancer. Nat Cell Biol 15, 2–8 (2013). https://doi.org/10.1038/ncb2641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2641

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer