Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular network for de novo generation of the apical surface and lumen

Abstract

To form epithelial organs cells must polarize and generate de novo an apical domain and lumen. Epithelial polarization is regulated by polarity complexes that are hypothesized to direct downstream events, such as polarized membrane traffic, although this interconnection is not well understood. We have found that Rab11a regulates apical traffic and lumen formation through the Rab guanine nucleotide exchange factor (GEF), Rabin8, and its target, Rab8a. Rab8a and Rab11a function through the exocyst to target Par3 to the apical surface, and control apical Cdc42 activation through the Cdc42 GEF, Tuba. These components assemble at a transient apical membrane initiation site to form the lumen. This Rab11a-directed network directs Cdc42-dependent apical exocytosis during lumen formation, revealing an interaction between the machineries of vesicular transport and polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of lumen initiation in MDCK cysts.
Figure 2: The Rab8 and Rab11 GTPase families direct lumen initiation.
Figure 3: A Rab11–Rabin8–Rab8 complex governs apical transport and single lumenogenesis.
Figure 4: The exocyst and Par3–aPKC regulate lumenogenesis.
Figure 5: Tuba and Cdc42 regulate transport from Rab8a/Rab11a-positive vesicles.
Figure 6: Rab8a/Rab11a regulate Cdc42 during apical transport.
Figure 7: A molecular network for de novo lumen generation.

Similar content being viewed by others

References

  1. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    Article  CAS  Google Scholar 

  2. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525 (2009).

    Article  CAS  Google Scholar 

  3. He, B. & Guo, W. The exocyst complex in polarized exocytosis. Curr. Opin. Cell Biol. 21, 537–542 (2009).

    Article  CAS  Google Scholar 

  4. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell. 13, 609–622 (2007).

    Article  CAS  Google Scholar 

  5. Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol. 168, 303–313 (2005).

    Article  CAS  Google Scholar 

  6. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  Google Scholar 

  7. Ferrari, A., Veligodskiy, A., Berge, U., Lucas, M. S. & Kroschewski, R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J. Cell Sci. 121, 3649–3663 (2008).

    Article  CAS  Google Scholar 

  8. Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47–61 (1999).

    Article  CAS  Google Scholar 

  9. Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat. Cell Biol. 10, 964–970 (2008).

    Article  CAS  Google Scholar 

  10. Li, B. X., Satoh, A. K. & Ready, D. F. Myosin V, Rab11 and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J. Cell Biol. 177, 659–669 (2007).

    Article  CAS  Google Scholar 

  11. Desclozeaux, M. et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am. J. Physiol. Cell Physiol. 295, C545–556 (2008).

    Article  CAS  Google Scholar 

  12. Knodler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA 107, 6346–6351 (2010).

    Article  CAS  Google Scholar 

  13. Yoshimura, S., Egerer, J., Fuchs, E., Haas, A. K. & Barr, F. A. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol. 178, 363–369 (2007).

    Article  CAS  Google Scholar 

  14. Wu, S., Mehta, S. Q., Pichaud, F., Bellen, H. J. & Quiocho, F. A. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12, 879–885 (2005).

    Article  CAS  Google Scholar 

  15. Oztan, A. et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol. Biol. Cell 18, 3978–3992 (2007).

    Article  CAS  Google Scholar 

  16. Zuo, X., Guo, W. & Lipschutz, J. H. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol. Biol. Cell 20, 2522–2529 (2009).

    Article  CAS  Google Scholar 

  17. Lalli, G. RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC. J. Cell Sci. 122, 1499–1506 (2009).

    Article  CAS  Google Scholar 

  18. Hayes, M. J. & Moss, S. E. Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. J. Biol. Chem. 284, 10202–10210 (2009).

    Article  CAS  Google Scholar 

  19. Zobiack, N., Rescher, U., Ludwig, C., Zeuschner, D. & Gerke, V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol. Biol. Cell 14, 4896–4908 (2003).

    Article  CAS  Google Scholar 

  20. Rodriguez-Fraticelli, A. E. et al. The Cdc42 GEF intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J. Cell Biol. 189, 725–738 (2010).

    Article  CAS  Google Scholar 

  21. Qin, Y., Meisen, W. H., Hao, Y. & Macara, I. G. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J. Cell Biol. 189, 661–669 (2010).

    Article  CAS  Google Scholar 

  22. Lubarsky, B. & Krasnow, M. A. Tube morphogenesis. Making and shaping biological tubes. Cell 112, 19–28 (2003).

    Article  CAS  Google Scholar 

  23. Bagnat, M., Cheung, I. D., Mostov, K. E. & Stainier, D. Y. Genetic control of single lumen formation in the zebrafish gut. Nat. Cell Biol. 9, 954–960 (2007).

    Article  CAS  Google Scholar 

  24. Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157, 1005–1015 (2002).

    Article  CAS  Google Scholar 

  25. Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell 20, 4652–4663 (2009).

    Article  CAS  Google Scholar 

  26. Morais-de-Sa, E., Mirouse, V. & St Johnston, D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141, 509–523 (2010).

    Article  CAS  Google Scholar 

  27. Walther, R. F. & Pichaud, F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr. Biol. 20, 1065–1074 (2010).

    Article  CAS  Google Scholar 

  28. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  29. Jaffe, A. B., Kaji, N., Durgan, J. & Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J. Cell. Biol. 183, 625–633 (2008).

    Article  CAS  Google Scholar 

  30. Harris, K. P. & Tepass, U. Cdc42 and vesicle trafficking in polarized cells. Traffic 11, 1272–1279 (2010).

    Article  CAS  Google Scholar 

  31. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol. 9, 1066–1073 (2007).

    Article  CAS  Google Scholar 

  32. Shivas, J. M., Morrison, H. A., Bilder, D. & Skop, A. R. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol. 20, 445–452 (2010).

    Article  CAS  Google Scholar 

  33. Hogan, B. L. & Kolodziej, P. A. Organogenesis: molecular mechanisms of tubulogenesis. Nat. Rev. Genet. 3, 513–523 (2002).

    Article  CAS  Google Scholar 

  34. Brignoni, M. et al. Exocytosis of vacuolar apical compartment (VAC) in Madin-Darby canine kidney epithelial cells: cAMP is involved as second messenger. Exp. Cell. Res. 205, 171–178 (1993).

    Article  CAS  Google Scholar 

  35. Matheson, J., Yu, X., Fielding, A. B. & Gould, G. W. Membrane traffic in cytokinesis. Biochem. Soc. Trans. 33, 1290–1294 (2005).

    Article  CAS  Google Scholar 

  36. Zhang, H., Squirrell, J. M. & White, J. G. RAB-11 permissively regulates spindle alignment by modulating metaphase microtubule dynamics in Caenorhabditis elegans early embryos. Mol. Biol. Cell 19, 2553–2565 (2008).

    Article  CAS  Google Scholar 

  37. Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008).

    Article  CAS  Google Scholar 

  38. Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr. Biol. 11, 1492–1502 (2001).

    Article  CAS  Google Scholar 

  39. Zheng, Z. et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis. J. Cell Biol. 189, 275–288 (2010).

    Article  CAS  Google Scholar 

  40. Yu, W. et al. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol. Biol. Cell 18, 1693–1700 (2007).

    Article  CAS  Google Scholar 

  41. Liu, K. D. et al. Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. Am. J. Physiol. Renal Physiol. 293, F1633–F1640 (2007).

    Article  CAS  Google Scholar 

  42. Tanimizu, N., Miyajima, A. & Mostov, K. E. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol. Biol. Cell. 20, 2486–2494 (2009).

    Article  CAS  Google Scholar 

  43. Wang, A. Z., Wang, J. C., Ojakian, G. K. & Nelson, W. J. Determinants of apical membrane formation and distribution in multicellular epithelial MDCK cysts. Am. J. Physiol. 267, C473–C481 (1994).

    Article  CAS  Google Scholar 

  44. Schuck, S., Manninen, A., Honsho, M., Fullekrug, J. & Simons, K. Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference. Proc. Natl Acad. Sci. USA 101, 4912–4917 (2004).

    Article  CAS  Google Scholar 

  45. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  46. Sfakianos, J. et al. Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells. J. Cell Biol. 179, 1133–1140 (2007).

    Article  CAS  Google Scholar 

  47. Ory, D. S., Neugeboren, B. A. & Mulligan, R. C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  Google Scholar 

  48. Hattula, K., Furuhjelm, J., Arffman, A. & Peranen, J. A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol. Biol. Cell 13, 3268–3280 (2002).

    Article  CAS  Google Scholar 

  49. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5, 126–136 (2003).

    Article  CAS  Google Scholar 

  50. Mangravite, L. M., Lipschutz, J. H., Mostov, K. E. & Giacomini, K. M. Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. Am. J. Physiol. Renal. Physiol. 280, F879–F885 (2001).

    Article  CAS  Google Scholar 

  51. Kreis, T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. Embo J. 5, 931–941 (1986).

    Article  CAS  Google Scholar 

  52. Brown, P. S. et al. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic 1, 124–140 (2000).

    Article  CAS  Google Scholar 

  53. Sato, Y. et al. Asymmetric coiled-coil structure with guanine nucleotide exchange activity. Structure 15, 245–252 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Barr, E. Brown, J. Stow, W. Guo, I. Macara, K. Simons, J. Wilson, T. Weimbs, and A. Zahraoui for gifts of reagents and unpublished data, and the Mostov lab for kind assistance. Supported by a Susan G Komen Foundation Fellowship (D.M.B.), a DOD Breast Cancer Concept Award (A.D.), NIH grants R01DK074398, R01AI25144 and P01AI53194 (K.E.M.), grants of the Human Frontiers Science Program (HFSP-CDA00011/2009), Marie Curie (IRG-209382), MICINN (BFU2008-01916) and (CONSOLIDER CSD2009-00016) to F.M.-B.; and a JAE fellowship (MICINN) to A.E.R.F.

Author information

Authors and Affiliations

Authors

Contributions

D.M.B., A.D., A.R.F, F.M.B. and J.P. designed the experiments. D.M.B., A.D., A.R.F. and J.P. did the experimental work. D.M.B. and K.E.M. analysed the experiments. D.M.B. and K.E.M wrote the manuscript.

Corresponding author

Correspondence to Keith E. Mostov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2093 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, D., Datta, A., Rodríguez-Fraticelli, A. et al. A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12, 1035–1045 (2010). https://doi.org/10.1038/ncb2106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing