Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

O2 regulates stem cells through Wnt/β-catenin signalling

Abstract

Stem cells reside in specialized microenvironments or 'niches' that regulate their function. In vitro studies using hypoxic culture conditions (< 5% O2) have revealed strong regulatory links between O2 availability and functions of stem and precursor cells1,2,3,4,5,6. Although some stem cells are perivascular, others may occupy hypoxic niches and be regulated by O2 gradients. However, the underlying mechanisms remain unclear. Here, we show that hypoxia inducible factor-1α (HIF-1α), a principal mediator of hypoxic adaptations, modulates Wnt/β-catenin signalling in hypoxic embryonic stem (ES) cells by enhancing β-catenin activation and expression of the downstream effectors LEF-1 and TCF-1. This regulation extends to primary cells, including isolated neural stem cells (NSCs), and is not observed in differentiated cells. In vivo, Wnt/β-catenin activity is closely associated with low O2 regions in the subgranular zone of the hippocampus, a key NSC niche7. Hif-1α deletion impairs hippocampal Wnt-dependent processes, including NSC proliferation, differentiation and neuronal maturation. This decline correlates with reduced Wnt/β-catenin signalling in the subgranular zone. O2 availability, therefore, may have a direct role in stem cell regulation through HIF-1α modulation of Wnt/β-catenin signalling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypoxia activates Wnt/β-catenin signalling in mouse embryonic cells.
Figure 2: HIF-1 (HIF-1α/ARNT complex) mediates hypoxia-induced Wnt signalling in embryonic cells.
Figure 3: O2 regulation of Wnt/β-catenin signalling is differentiation-stage specific.
Figure 4: Deletion of Hif-1α in vivo suppresses adult hippocampal neurogenesis.
Figure 5: Neuronal Hif-1α regulates neurogenesis through Wnt/β-catenin signalling.

Similar content being viewed by others

References

  1. Studer, L. et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    Article  CAS  Google Scholar 

  2. Adelman, D. M., Gertsenstein, M., Nagy, A., Simon, M. C. & Maltepe, E. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14, 3191–3203 (2000).

    Article  CAS  Google Scholar 

  3. Genbacev, O., Zhou, Y., Ludlow, J. W. & Fisher, S. J. Regulation of human placental development by oxygen tension. Science 277, 1669–1672 (1997).

    Article  CAS  Google Scholar 

  4. Adelman, D. M., Maltepe, E. & Simon, M. C. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 13, 2478–2483 (1999).

    Article  CAS  Google Scholar 

  5. Danet, G. H., Pan, Y., Luongo, J. L., Bonnet, D. A. & Simon, M. C. Expansion of human SCID-repopulating cells under hypoxic conditions. J. Clin. Invest. 112, 126–135 (2003).

    Article  CAS  Google Scholar 

  6. Morrison, S. J. et al. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 20, 7370–7376 (2000).

    Article  CAS  Google Scholar 

  7. Lie, D. C. et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375 (2005).

    Article  CAS  Google Scholar 

  8. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  Google Scholar 

  9. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  10. Hu, C. J. et al. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 α (HIF-1α) and HIF-2α in stem cells. Mol. Cell Biol. 26, 3514–3526 (2006).

    Article  CAS  Google Scholar 

  11. Naito, A. T. et al. Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ. Res. 97, 144–151 (2005).

    Article  CAS  Google Scholar 

  12. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  13. Kaidi, A., Williams, A. C. & Paraskeva, C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biol. 9, 210–217 (2007).

    Article  CAS  Google Scholar 

  14. Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnol. 21, 183–186 (2003).

    Article  CAS  Google Scholar 

  15. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    Article  CAS  Google Scholar 

  16. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  17. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  Google Scholar 

  18. Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).

    CAS  PubMed  Google Scholar 

  19. Ryan, H. E., Lo, J. & Johnson, R. S. HIF-1 α is required for solid tumor formation and embryonic vascularization. EMBO J. 17, 3005–3015 (1998).

    Article  CAS  Google Scholar 

  20. Dragatsis, I. & Zeitlin, S. CaMKIIα–Cre transgene expression and recombination patterns in the mouse brain. Genesis 26, 133–135 (2000).

    Article  CAS  Google Scholar 

  21. Baranova, O. et al. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci. 27, 6320–6332 (2007).

    Article  CAS  Google Scholar 

  22. Barth, A. I., Stewart, D. B. & Nelson, W. J. T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant β-catenin. Proc. Natl Acad. Sci. USA 96, 4947–4952 (1999).

    Article  CAS  Google Scholar 

  23. Hu, C. J., Sataur, A., Wang, L., Chen, H. & Simon, M. C. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α. Mol. Biol. Cell 18, 4528–4542 (2007).

    Article  CAS  Google Scholar 

  24. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  25. Yoshida, S., Sukeno, M. & Nabeshima, Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726 (2007).

    Article  CAS  Google Scholar 

  26. Tavazoie, M. et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288 (2008).

    Article  CAS  Google Scholar 

  27. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  Google Scholar 

  28. Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    Article  CAS  Google Scholar 

  29. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  Google Scholar 

  30. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

    Article  CAS  Google Scholar 

  31. Maltepe, E., Keith, B., Arsham, A. M., Brorson, J. R. & Simon, M. C. The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochem. Biophys. Res. Commun. 273, 231–238 (2000).

    Article  CAS  Google Scholar 

  32. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  Google Scholar 

  33. Gruber, M. et al. Acute postnatal ablation of Hif-2α results in anemia. Proc. Natl Acad. Sci. USA 104, 2301–2306 (2007).

    Article  CAS  Google Scholar 

  34. Mao, Y. et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell 136, 1017–1031 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kinzler and B. Vogelstein for the Wnt (TOP/FOP) reporter constructs; P. Carmeliet for Hif-1α−/− ES cells; and E. Brown for Ubc-Cre-ERT2 mice. We thank X. Sun, Case Western Reserve University, and H. Yu, University of Pennsylvania for technical assistance with tissue harvesting and sectioning. We thank B. Keith and the Simon lab for discussion and critical review of the manuscript. This work was supported by funds from the Howard Hughes Medical Institute (HHMI), the Abramson Family Cancer Research Institute, and the National Institutes of Health (Grant No. MH58324 to P.S.K). M.C.S. is an investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and W.T.O. designed, performed and analysed the experiments; P.S.K and M.C.S assisted in the interpretation of results; J.C.C. and J.C.L. provided the αCamKII-Cre- Hif-1αf/f mice; R.S.J. provided the Hif-1αf/f mice; J.M. made the figures and wrote the paper; M.C.S. edited the paper.

Corresponding author

Correspondence to M. Celeste Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazumdar, J., O'Brien, W., Johnson, R. et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 12, 1007–1013 (2010). https://doi.org/10.1038/ncb2102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing