Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MG53 nucleates assembly of cell membrane repair machinery

Abstract

Dynamic membrane repair and remodelling is an elemental process that maintains cell integrity and mediates efficient cellular function. Here we report that MG53, a muscle-specific tripartite motif family protein (TRIM72), is a component of the sarcolemmal membrane-repair machinery. MG53 interacts with phosphatidylserine to associate with intracellular vesicles that traffic to and fuse with sarcolemmal membranes. Mice null for MG53 show progressive myopathy and reduced exercise capability, associated with defective membrane-repair capacity. Injury of the sarcolemmal membrane leads to entry of the extracellular oxidative environment and MG53 oligomerization, resulting in recruitment of MG53-containing vesicles to the injury site. After vesicle translocation, entry of extracellular Ca2+ facilitates vesicle fusion to reseal the membrane. Our data indicate that intracellular vesicle translocation and Ca2+-dependent membrane fusion are distinct steps involved in the repair of membrane damage and that MG53 may initiate the assembly of the membrane repair machinery in an oxidation-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mice null for MG53, a muscle specific TRIM family protein, show progressive muscle pathology.
Figure 2: Defective membrane repair capacity in mg53−/− muscle.
Figure 3: MG53 facilitates repair of acute membrane damage in muscle cells.
Figure 4: Oxidation-mediated MG53 oligomerization serves as a nucleation mechanism for acute membrane repair.
Figure 5: Repair patch formation by MG53 restores cell integrity following acute injury.
Figure 6: MG53 binds to phosphatidylserine (PS) to mediate Ca2+-independent vesicle translocation to the injury site.
Figure 7: Relative contribution of extracellular Ca2+ and oxidation to membrane repair in skeletal muscle.
Figure 8: A schematic representation of the proposed function of MG53 in muscle membrane repair.

Similar content being viewed by others

References

  1. McNeil, P. L., Miyake, K. & Vogel, S. S. The endomembrane requirement for cell surface repair. Proc. Natl Acad. Sci. USA 100, 4592–4597 (2003).

    Article  CAS  Google Scholar 

  2. Doherty, K. R. & McNally, E. M. Repairing the tears: dysferlin in muscle membrane repair. Trends Mol. Med. 9, 327–330 (2003).

    Article  CAS  Google Scholar 

  3. Bansal, D. & Campbell, K. P. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol. 14, 206–213 (2004).

    Article  CAS  Google Scholar 

  4. Bazan, N. G., Marcheselli, V. L. & Cole-Edwards, K. Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann. NY Acad. Sci. 1053, 137–147 (2005).

    Article  CAS  Google Scholar 

  5. McNeil, P. L. & Kirchhausen, T. An emergency response team for membrane repair. Nature Rev. Mol. Cell Biol. 6, 499–505 (2005).

    Article  CAS  Google Scholar 

  6. Steinhardt, R. A., Bi, G. & Alderton, J. M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390–393 (1994).

    Article  CAS  Google Scholar 

  7. Miyake, K. & McNeil, P. L. Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J. Cell Biol. 131, 1737–1745 (1995).

    Article  CAS  Google Scholar 

  8. Bansal, D. et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168–172 (2003).

    Article  CAS  Google Scholar 

  9. Towler, M. C., Kaufman, S. J. & Brodsky, F. M. Membrane traffic in skeletal muscle. Traffic 5, 129–139 (2004).

    Article  CAS  Google Scholar 

  10. Klinge, L. et al. From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis. FASEB J. 21, 1768–1776 (2007).

    Article  CAS  Google Scholar 

  11. Terasaki, M., Miyake, K. & McNeil, P. L. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J. Cell Biol. 139, 63–74 (1997).

    Article  CAS  Google Scholar 

  12. McNeil, P. L., Vogel, S. S., Miyake, K. & Terasaki, M. Patching plasma membrane disruptions with cytoplasmic membrane. J. Cell Sci. 113, 1891–1902 (2000).

    CAS  PubMed  Google Scholar 

  13. Nishi, M. et al. Abnormal features in skeletal muscle from mice lacking mitsugumin29. J. Cell Biol. 147, 1473–1480 (1999).

    Article  CAS  Google Scholar 

  14. Takeshima, H., Komazaki, S., Nishi, M., Iino, M. & Kangawa, K. Junctophilins: a novel family of junctional membrane complex proteins. Mol. Cell 6, 11–22 (2000).

    CAS  PubMed  Google Scholar 

  15. Yazawa, M. et al. TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448, 78–82 (2007).

    Article  CAS  Google Scholar 

  16. Weisleder, N., Takeshima, H. & Ma, J. Immuno-proteomic approach to excitation-contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium 43, 1–8 (2008).

    Article  CAS  Google Scholar 

  17. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001).

    Article  CAS  Google Scholar 

  18. Meroni, G. & Diez-Roux, G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays 27, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  19. Ponting, C., Schultz, J. & Bork, P. SPRY domains in ryanodine receptors (Ca2+-release channels). Trends Biochem. Sci. 22, 193–194 (1997).

    Article  CAS  Google Scholar 

  20. McNeil, P. L. & Khakee, R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am. J. Pathol. 140, 1097–1109 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Takekura, H., Fujinami, N., Nishizawa, T., Ogasawara, H. & Kasuga, N. Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J. Physiol. 533, 571–583 (2001).

    Article  CAS  Google Scholar 

  22. Coral-Vazquez, R. et al. Disruption of the sarcoglycan–sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98, 465–474 (1999).

    Article  CAS  Google Scholar 

  23. Pan, Z. et al. Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nature Cell Biol. 4, 379–383 (2002).

    Article  CAS  Google Scholar 

  24. Pouvreau, S. et al. Ca2+ sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc. Natl Acad. Sci. USA 104, 5235–5240 (2007).

    Article  CAS  Google Scholar 

  25. Dowler, S., Kular, G. & Alessi, D. R. Protein lipid overlay assay. Sci. STKE 2002, PL6 (2002).

    PubMed  Google Scholar 

  26. Li, D., Miller, M. & Chantler, P. D. Association of a cellular myosin II with anionic phospholipids and the neuronal plasma membrane. Proc. Natl Acad. Sci. USA 91, 853–857 (1994).

    Article  CAS  Google Scholar 

  27. Swairjo, M. A., Concha, N. O., Kaetzel, M. A., Dedman, J. R. & Seaton, B. A. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct. Biol. 2, 968–974 (1995).

    Article  CAS  Google Scholar 

  28. Dong, Z., Saikumar, P., Weinberg, J. M. & Venkatachalam, M. A. Calcium in cell injury and death. Annu. Rev. Pathol. 1, 405–434 (2006).

    Article  CAS  Google Scholar 

  29. Han, R. & Campbell, K. P. Dysferlin and muscle membrane repair. Curr. Opin. Cell Biol. 19, 409–416 (2007).

    Article  CAS  Google Scholar 

  30. Weiler, T. et al. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum. Mol. Genet. 8, 871–877 (1999).

    Article  CAS  Google Scholar 

  31. Saito, A. et al. Miyoshi myopathy patients with novel 5´ splicing donor site mutations showed different dysferlin immunostaining at the sarcolemma. Acta Neuropathol. 104, 615–620 (2002).

    CAS  PubMed  Google Scholar 

  32. Glover, L. & Brown, R. H., Jr. Dysferlin in membrane trafficking and patch repair. Traffic 8, 785–794 (2007).

    Article  CAS  Google Scholar 

  33. Weisleder, N. et al. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. J. Cell Biol. 174, 639–645 (2006).

    Article  CAS  Google Scholar 

  34. Ko, J. K. & Ma, J. A rapid and efficient PCR-based mutagenesis method applicable to cell physiology study. Am. J. Physiol. Cell Physiol. 288, C1273–C1278 (2005).

    Article  CAS  Google Scholar 

  35. Takeshima, H. et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369, 556–559 (1994).

    Article  CAS  Google Scholar 

  36. Yang, D. et al. RyR3 amplifies RyR1-mediated Ca2+-induced Ca2+ release in neonatal mammalian skeletal muscle. J. Biol. Chem. 276, 40210–40214 (2001).

    Article  CAS  Google Scholar 

  37. Millay, D. P. et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nature Med. 14, 442–447 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michael Reid, Jerome Parness, and Heping Cheng for helpful suggestions to this work. Yi Chu provided assistance in data processing and graphic conversions. We also thank the Cancer Institute of New Jersey Tissue Analytic Services Shared Resource and the UMDNJ-Cell Imaging Core facility, which is supported by NCRR from NIH, for providing assistance with imaging. This work was supported by grants from NIH (J.M.), Ministry of Education, Science, Sports and Culture of Japan (H.T.) and the American Heart Association (C.C., N.W., M.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Takeshima or Jianjie Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1713 kb)

Supplementary Information

Supplementary Movie 1 (MOV 10189 kb)

Supplementary Information

Supplementary Movie 2 (AVI 3591 kb)

Supplementary Information

Supplementary Movie 3 (AVI 4216 kb)

Supplementary Information

Supplementary Movie 4 (AVI 9992 kb)

Supplementary Information

Supplementary Movie 5 (AVI 3781 kb)

Supplementary Information

Supplementary Movie 6 (MOV 2650 kb)

Supplementary Information

Supplementary Movie 7 (AVI 5766 kb)

Supplementary Information

Supplementary Movie 8 (AVI 4742 kb)

Supplementary Information

Supplementary Movie 9 (AVI 3589 kb)

Supplementary Information

Supplementary Movie 10 (AVI 3589 kb)

Supplementary Information

Supplementary Movie 11 (MOV 1543 kb)

Supplementary Information

Supplementary Movie 12 (MOV 1881 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, C., Masumiya, H., Weisleder, N. et al. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11, 56–64 (2009). https://doi.org/10.1038/ncb1812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing