Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization

Abstract

The orientation of the mitotic spindle relative to the cell axis determines whether polarized cells undergo symmetric or asymmetric divisions. Drosophila epithelial cells and neuroblasts provide an ideal pair of cells to study the regulatory mechanisms involved. Epithelial cells divide symmetrically, perpendicular to the apical–basal axis. In the asymmetric divisions of neuroblasts, by contrast, the spindle reorients parallel to that axis, leading to the unequal distribution of cell-fate determinants to one daughter cell1. Receptor-independent G-protein signalling involving the GoLoco protein Pins is essential for spindle orientation in both cell types2. Here, we identify Mushroom body defect (Mud)3 as a downstream effector in this pathway. Mud directly associates and colocalizes with Pins at the cell cortex overlying the spindle pole(s) in both neuroblasts and epithelial cells. The cortical Mud protein is essential for proper spindle orientation in the two different division modes. Moreover, Mud localizes to centrosomes during mitosis independently of Pins to regulate centrosomal organization. We propose that Drosophila Mud, vertebrate NuMA4 and Caenorhabditis elegans Lin-5 (refs 5, 6) have conserved roles in the mechanism by which G-proteins regulate the mitotic spindle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mud is a Pins-binding protein.
Figure 2: Mud localizes to the cell cortex and the centrosomal regions in neuroblasts and epithelial cells.
Figure 3: mud-mutant embryos retain the normal cell polarity but show defects in spindle orientation and centrosomal organization.
Figure 4: Mud is required for tight coupling of the spindle axis with basal protein.
Figure 5: Ectopic expression of Inscuteable relocalizes Mud in epithelial cells.

Similar content being viewed by others

References

  1. Betschinger, J. & Knoblich, J.A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article  CAS  Google Scholar 

  2. Izumi, Y., Ohta, N., Itoh-Furuya, A., Fuse, N. & Matsuzaki, F. Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164, 729–738 (2004).

    Article  CAS  Google Scholar 

  3. Guan, Z. et al. Mushroom body defect, a gene involved in the control of neuroblast proliferation in Drosophila, encodes a coiled-coil protein. Proc. Natl Acad. Sci. USA 97, 8122–8127 (2000).

    Article  CAS  Google Scholar 

  4. Du, Q., Stukenberg, P.T. & Macara, I.G. A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nature Cell Biol. 3, 1069–1075 (2001).

    Article  CAS  Google Scholar 

  5. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003).

    Article  CAS  Google Scholar 

  6. Srinivasan, D.G., Fisk, R.M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

    Article  CAS  Google Scholar 

  7. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J.A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

    Article  CAS  Google Scholar 

  8. Wilkie, T.M. & Kinch, L. New roles for Gα and RGS proteins: communication continues despite pulling sisters apart. Curr. Biol. 15, R843–R854 (2005).

    Article  CAS  Google Scholar 

  9. Yu, F. et al. Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev. 19, 1341–1353 (2005).

    Article  CAS  Google Scholar 

  10. Bellaiche, Y. & Gotta, M. Heterotrimeric G proteins and regulation of size asymmetry during cell division. Curr. Opin. Cell Biol. 17, 658–663 (2005).

    Article  CAS  Google Scholar 

  11. Schober, M., Schaefer, M. & Knoblich, J.A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  CAS  Google Scholar 

  12. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    Article  CAS  Google Scholar 

  13. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    Article  CAS  Google Scholar 

  14. Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003).

    Article  CAS  Google Scholar 

  15. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol. 3, 297–300 (2001).

    Article  CAS  Google Scholar 

  16. Du, Q. & Macara, I.G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  Google Scholar 

  17. Prokop, A. & Technau, G.M. Normal function of the mushroom body defect gene of Drosophila is required for the regulation of the number and proliferation of neuroblasts. Dev. Biol. 161, 321–337 (1994).

    Article  CAS  Google Scholar 

  18. Cai, Y., Yu, F., Lin, S., Chia, W. & Yang, X. Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions. Cell 112, 51–62 (2003).

    Article  CAS  Google Scholar 

  19. Kraut, R., Chia, W., Jan, L.Y., Jan, Y. N & Knoblich, J.A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    Article  CAS  Google Scholar 

  20. Merdes, A., Ramyar, K., Vechio, J.D. & Cleveland, D.W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  Google Scholar 

  21. Ahringer, J. Control of cell polarity and mitotic spindle positioning in animal cells. Curr. Opin. Cell Biol. 15, 73–81 (2003).

    Article  CAS  Google Scholar 

  22. Siegrist, S.E. & Doe, C.Q. Microtubule-induced Pins/Gαi cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335 (2005).

    Article  CAS  Google Scholar 

  23. Gaglio, T., Saredi, A. & Compton, D.A. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131, 693–708 (1995).

    Article  CAS  Google Scholar 

  24. Merdes, A., Heald, R., Samejima, K., Earnshaw, W.C. & Cleveland, D.W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  Google Scholar 

  25. Siller, K.H., Serr, M., Steward, R., Hays, T. S. & Doe, C.Q. Live imaging of Drosophila brain neuroblasts reveals a role for lis1/dynactin in spindle assembly and mitotic checkpoint control. Mol. Biol. Cell 16, 5127–5140 (2005).

    Article  CAS  Google Scholar 

  26. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  27. Lu, B., Roegiers, F., Jan, L.Y. & Jan, Y.N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).

    Article  CAS  Google Scholar 

  28. Berrueta, L., Tirnauer, J.S., Schuyler, S.C., Pellman, D . & Bierer, B. E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 9, 425–428 (1999).

    Article  CAS  Google Scholar 

  29. Askham, J.M., Vaughan, K.T., Goodson, H.V. & Morrison, E.E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002).

    Article  CAS  Google Scholar 

  30. Ligon, L.A., Shelly, S.S., Tokito, M. & Holzbaur, E.L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell 14, 1405–1417 (2003).

    Article  CAS  Google Scholar 

  31. Chou, T.B. & Perrimon, N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Yu, W. Chia, J. Knoblich and Developmental Studies Hybridoma Bank and the Bloomington Stock Center for providing flies and antibodies. We also thank N. Fuse, W. Moon, H. Ogawa, A. Nakamura, T. Issiki, F. Yu and W. Chia for discussions and comments on the manuscript. This work was supported by CREST (Core Research for Evolution Science and Technology) for the Japan Science and Technology Corporation and a grant from the Deutsche Forschungsgemeinschaft (Ra561/5-2). Y. I. is supported by a Special Postdoctoral Research Program of RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasushi Izumi or Fumio Matsuzaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumi, Y., Ohta, N., Hisata, K. et al. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8, 586–593 (2006). https://doi.org/10.1038/ncb1409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing