Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Negative regulation of EGFR signalling through integrin-α1β1-mediated activation of protein tyrosine phosphatase TCPTP

Abstract

Integrin-mediated cell adhesion regulates a multitude of cellular responses, including proliferation, survival and cross-talk between different cellular signalling pathways1. So far, integrins have been mainly shown to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signalling2,3,4. Here we show that a collagen-binding integrin α1β1 functions as a negative regulator of epidermal growth factor receptor (EGFR) signalling through the activation of a protein tyrosine phosphatase. The cytoplasmic tail of α1 integrin selectively interacts with a ubiquitously expressed protein tyrosine phosphatase TCPTP (T-cell protein tyrosine phosphatase) and activates it after cell adhesion to collagen. The activation results in reduced EGFR phosphorylation after EGF stimulation. Introduction of the α1 cytoplasmic domain peptide into cells induces phosphatase activation and inhibits EGF-induced cell proliferation and anchorage-independent growth of malignant cells. These data are the first demonstration of the regulation of TCPTP activity in vivo and represent a new molecular paradigm of integrin-mediated negative regulation of receptor tyrosine kinase signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCPTP associates with the cytoplasmic domain of the integrin α1-chain.
Figure 2: The integrin α1 cytoplasmic tail activates TCPTP.
Figure 3: Integrin α1β1 ligation attenuates EGFR phosphorylation through activation of TCPTP.
Figure 4: α1 cytoplasmic tail peptide induces phosphatase activity in vivo and inhibits anchorage-independent and EGF-induced cell growth.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  2. Ivaska, J., Bosca, L. & Parker, P. J. PKCε is a permissive link in integrin-dependent IFN-γ signalling that facilitates JAK phosphorylation of STAT1. Nature Cell Biol. 5, 363–369 (2003).

    Article  CAS  Google Scholar 

  3. Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).

    Article  CAS  Google Scholar 

  4. Moro, L. et al. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J. 17, 6622–6632 (1998).

    Article  CAS  Google Scholar 

  5. Ivaska, J. et al. Integrin α2β1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 β. Mol. Cell. Biol. 22, 1352–1359 (2002).

    Article  CAS  Google Scholar 

  6. Howe, A., Aplin, A. E., Alahari, S. K. & Juliano, R. L. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231 (1998).

    Article  CAS  Google Scholar 

  7. Ivaska, J. et al. Integrin α2β1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the α2 cytoplasmic tail. J. Cell Biol. 147, 401–416 (1999).

    Article  CAS  Google Scholar 

  8. Gardner, H., Kreidberg, J., Koteliansky, V. & Jaenisch, R. Deletion of integrin α1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev. Biol. 175, 301–313 (1996).

    Article  CAS  Google Scholar 

  9. Mosinger, B., Jr., Tillmann, U., Westphal, H. & Tremblay, M. L. Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proc. Natl Acad. Sci. USA 89, 499–503 (1992).

    Article  CAS  Google Scholar 

  10. Tiganis, T., Bennett, A. M., Ravichandran, K. S. & Tonks, N. K. Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol. Cell. Biol. 18, 1622–1634 (1998).

    Article  CAS  Google Scholar 

  11. Liu, S., Calderwood, D. A. & Ginsberg, M. H. Integrin cytoplasmic domain-binding proteins. J. Cell. Sci. 113, 3563–3571 (2000).

    CAS  PubMed  Google Scholar 

  12. Pankov, R. et al. Specific β1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J. Biol. Chem. 278, 18671–18681 (2003).

    Article  CAS  Google Scholar 

  13. Persson, C. et al. Site-selective regulation of platelet-derived growth factor β receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Mol. Cell. Biol. 24, 2190–2201 (2004).

    Article  CAS  Google Scholar 

  14. Galic, S. et al. Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol. Cell. Biol. 23, 2096–2108 (2003).

    Article  CAS  Google Scholar 

  15. Simoncic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L. & McGlade, C. J. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr. Biol. 12, 446–453 (2002).

    Article  CAS  Google Scholar 

  16. Hao, L., Tiganis, T., Tonks, N. K. & Charbonneau, H. The noncatalytic C-terminal segment of the T cell protein tyrosine phosphatase regulates activity via an intramolecular mechanism. J. Biol. Chem. 272, 29322–29329 (1997).

    Article  CAS  Google Scholar 

  17. Alonso, A. et al. Protein tyrosine phosphatases in the human genome. Cell 117, 699–711 (2004).

    Article  CAS  Google Scholar 

  18. Tiganis, T., Kemp, B. E. & Tonks, N. K. The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. J. Biol. Chem. 274, 27768–27775 (1999).

    Article  CAS  Google Scholar 

  19. Pozzi, A., Wary, K. K., Giancotti, F. G. & Gardner, H. A. Integrin α1β1 mediates a unique collagen-dependent proliferation pathway in vivo. J. Cell Biol. 142, 587–594 (1998).

    Article  CAS  Google Scholar 

  20. Cool, D. E. et al. Cytokinetic failure and asynchronous nuclear division in BHK cells overexpressing a truncated protein-tyrosine-phosphatase. Proc. Natl Acad. Sci. USA 89, 5422–5426 (1992).

    Article  CAS  Google Scholar 

  21. Cool, D. E., Tonks, N. K., Charbonneau, H., Fischer, E. H. & Krebs, E. G. Expression of a human T-cell protein-tyrosine-phosphatase in baby hamster kidney cells. Proc. Natl Acad. Sci. USA 87, 7280–7284 (1990).

    Article  CAS  Google Scholar 

  22. Klingler-Hoffmann, M. et al. The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. J. Biol. Chem. 276, 46313–46318 (2001).

    Article  CAS  Google Scholar 

  23. Moro, L. et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277, 9405–9414 (2002).

    Article  CAS  Google Scholar 

  24. Pan, Y. et al. 5q11, 8p11, and 10q22 are recurrent chromosomal breakpoints in prostate cancer cell lines. Genes Chromosomes Cancer 30, 187–195 (2001).

    Article  CAS  Google Scholar 

  25. Zienolddiny, S., Ryberg, D., Arab, M. O., Skaug, V. & Haugen, A. Loss of heterozygosity is related to p53 mutations and smoking in lung cancer. Br. J. Cancer 84, 226–231 (2001).

    Article  CAS  Google Scholar 

  26. Su, A. I. et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 61, 7388–7393 (2001).

    CAS  PubMed  Google Scholar 

  27. Flint, A. J., Tiganis, T., Barford, D. & Tonks, N. K. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl Acad. Sci USA 94, 1680–1685 (1997).

    Article  CAS  Google Scholar 

  28. Ivaska, J., Whelan, R. D., Watson, R. & Parker, P. J. PKCε controls the traffic of β1 integrins in motile cells. EMBO J. 21, 3608–3619 (2002).

    Article  CAS  Google Scholar 

  29. Kim, T. Y. et al. Oncogenic potential of a dominant negative mutant of interferon regulatory factor 3. J. Biol. Chem. 278, 15272–15278 (2003).

    Article  CAS  Google Scholar 

  30. Gardner, H., Broberg, A., Pozzi, A., Laato, M. & Heino, J. Absence of integrin α1β1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J. Cell Sci. 112, 263–272 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. J. Parker and M. Salmi for valuable comments; T. Tiganis for the TC45 construct; A. Pozzi for the α1 integrin construct; J. Durgan for help with the yeast-two-hybrid assay; C. Nylund for the RT–PCR analysis; S. Käkönen for help with the statistical analysis; J. Heino for the peptides and the α1−/− and α1+/+ fibroblasts; and H. Jalonen, P. Toivonen and A. Raita for technical assistance. This work was supported by grants from the Academy of Finland, the Sigrid Juselius Foundation, Emil Aaltonen Foundation, Finnish Cancer Organisations and Southwestern Finland's Culture Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Ivaska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Fig S1, Fig S2, Fig S3, Fig S4 (PDF 386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattila, E., Pellinen, T., Nevo, J. et al. Negative regulation of EGFR signalling through integrin-α1β1-mediated activation of protein tyrosine phosphatase TCPTP. Nat Cell Biol 7, 78–85 (2005). https://doi.org/10.1038/ncb1209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing