Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antibody-targeted cell fusion

Abstract

Membrane fusion has many potential applications in biotechnology. Here we show that antibody-targeted cell fusion can be achieved by engineering a fusogenic viral membrane glycoprotein complex. Three different single-chain antibodies were displayed at the extracellular C terminus of the measles hemagglutinin (H) protein, and combinations of point mutations were introduced to ablate its ability to trigger fusion through the native viral receptors CD46 and SLAM. When coexpressed with the measles fusion (F) protein, using plasmid cotransfection or bicistronic adenoviral vectors, the retargeted H proteins could mediate antibody-targeted cell fusion of receptor-negative or receptor-positive index cells with receptor-positive target cells. Adenoviral expression vectors mediating human epidermal growth factor receptor (EGFR)-targeted cell fusion were potently cytotoxic against EGFR-positive tumor cell lines and showed superior antitumor potency against EGFR-positive tumor xenografts as compared with control adenoviruses expressing native (untargeted) or CD38-targeted H proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fusogenic properties of mutant H glycoproteins displaying anti-CD38 antibody.
Figure 2: Antibody-targeted cell fusion and cell killing.
Figure 3: Targeted cytoreductive gene therapy using homologous targeted cell fusion.
Figure 4: Adenoviral vectors mediating homologous or heterologous targeted cell fusion.

Similar content being viewed by others

References

  1. Shemer, G. & Podbilewicz, B. Fusomorphogenesis: cell fusion in organ formation. Dev. Dyn. 218, 30–51 (2000).

    Article  CAS  Google Scholar 

  2. Holden, C. & Vogel, G. Stem cells. Plasticity: time for a reappraisal. Science 296, 2126–2129 (2002).

    Article  CAS  Google Scholar 

  3. Griffin, D.E. Measles Virus. in Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 1402–1442 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  4. Freed, E.O. & Martin, M.A. HIVs and their replication. in Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 1971–2042 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  5. Cohen, J.I. & Straus, S.E. Varicella-Zoster virus and its replication. in Fields Virology (eds. Knipe, D.M. & Howley, P.M.) 2707–2730 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  6. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  7. Dorssers, L.C. & Veldscholte, J. Identification of a novel breast-cancer-anti-estrogen-resistance (BCAR2) locus by cell-fusion-mediated gene transfer in human breast-cancer cells. Int. J. Cancer 72, 700–7005 (1997).

    Article  CAS  Google Scholar 

  8. Dieken, E.S., Epner, E.M., Fiering, S., Fournier, R.E. & Groudine, M. Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nat. Genet. 12, 174–182 (1996).

    Article  CAS  Google Scholar 

  9. Galanis, E. et al. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum. Gene Ther. 12, 811–821 (2001).

    Article  CAS  Google Scholar 

  10. Peng, K.W. et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 62, 4656–4662 (2002).

    CAS  PubMed  Google Scholar 

  11. Guo, Y. et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science 263, 518–520 (1994).

    Article  CAS  Google Scholar 

  12. Bateman, A. et al. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res. 60, 1492–1497 (2000).

    CAS  PubMed  Google Scholar 

  13. Dorig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  CAS  Google Scholar 

  14. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).

    Article  CAS  Google Scholar 

  15. von Messling, V., Zimmer, G., Herrler, G., Haas, L. & Cattaneo, R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J. Virol. 75, 6418–6427 (2001).

    Article  CAS  Google Scholar 

  16. Hammond, A.L. et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J. Virol. 75, 2087–2097 (2001).

    Article  CAS  Google Scholar 

  17. Peng, K.W. et al. Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 101, 2557–2562 (2003).

    Article  CAS  Google Scholar 

  18. Lecouturier, V. et al. Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J. Virol. 70, 4200–4204 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vongpunsawad, S., Oezgum, N., Braun, W. & Cattaneo, R. Selectively receptor-bind measles viruses: Identification of the SLAM-and CD46-interacting residues and their localization on a new hemagglutinin structural model. J. Virol. 78, 302–313 (2004).

    Article  CAS  Google Scholar 

  20. Xie, M., Tanaka, K., Ono, N., Minagawa, H. & Yanagi, Y. Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutinin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Arch. Virol. 144, 1689–1699 (1999).

    Article  CAS  Google Scholar 

  21. Cattaneo, R. & Rose, J.K. Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J. Virol. 67, 1493–1502 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chester, K.A. et al. Phage libraries for generation of clinically useful antibodies. Lancet 343, 455–456 (1994).

    Article  CAS  Google Scholar 

  23. Kettleborough, C.A., Saldanha, J., Heath, V.J., Morrison, C.J. & Bendig, M.M. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng. 4, 773–783 (1991).

    Article  CAS  Google Scholar 

  24. Wang, G. et al. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat. Med. 4, 168–172 (1998).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  Google Scholar 

  26. Mehta, K., Shahid, U. & Malavasi, F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 10, 1408–1417 (1996).

    Article  CAS  Google Scholar 

  27. Obrink, B. CEA adhesion molecules: multifunctional proteins with signal-regulatory properties. Curr. Opin. Cell Biol. 9, 616–626 (1997).

    Article  CAS  Google Scholar 

  28. Carpenter, G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J. 6, 3283–3289 (1992).

    Article  CAS  Google Scholar 

  29. Kemper, C. et al. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392 (2003).

    Article  CAS  Google Scholar 

  30. Schneider, U., Bullough, F., Vongpunsawad, S., Russell, S.J. & Cattaneo, R. Recombinant measles viruses efficiently entering cells through targeted receptors. J. Virol. 74, 9928–9936 (2000).

    Article  CAS  Google Scholar 

  31. Robbins, P.F. et al. Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res. 51, 3657–3662 (1991).

    CAS  PubMed  Google Scholar 

  32. Cathomen, T., Buchholz, C.J., Spielhofer, P. & Cattaneo, R. Preferential initiation at the second AUG of the measles virus F mRNA: a role for the long untranslated region. Virology 214, 628–632 (1995).

    Article  CAS  Google Scholar 

  33. Mizuguchi, H., Xu, Z.L., Sakurai, F., Mayumi, T. & Hayakawa, T. Tight positive regulation of transgene expression by a single adenovirus vector containing the rtTA and tTS expression cassettes in separate genome regions. Hum. Gene Ther. 14, 1265–1277 (2003).

    Article  CAS  Google Scholar 

  34. Firsching, R. et al. Measles virus spread by cell-cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. J Virol. 73, 5265–5273 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucl. Acids Res. 23, 3816–3821 (1995).

    Article  CAS  Google Scholar 

  36. Mittereder, N., March, K.L. & Trapnell, B.C. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J. Virol. 70, 7498–7509 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Langedijk, J.P., Daus, F.J. & van Oirschot, J.T. Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J. Virol. 71, 6155–6167 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C.D. James for CHO-EGFR cells, Y. Yanagi for CHO-SLAM cells, J. Schlom for MC38-CEA cells, E. Vitetta for SKOV3ip.1 cells, J.P. Atkinson for CD46 plasmid, J.A. Lust for CD38 scFv, R. Hawkins for CEA scFv and G. Winter for EGFR scFv. We also thank M.J. Federspiel and R.G. Vile for critical reading of the manuscript. This study is supported by the Mayo Foundation, Harold W. Siebens Foundation and NIH grants CA100634-01 and CA90636-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Peng, KW., Vongpunsawad, S. et al. Antibody-targeted cell fusion. Nat Biotechnol 22, 331–336 (2004). https://doi.org/10.1038/nbt942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing