Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The application of bone morphogenetic proteins to dental tissue engineering

Abstract

Progress in understanding the role of bone morphogenetic proteins (BMPs) in craniofacial and tooth development, the demonstration of stem cells in dental pulp and accumulating knowledge on biomaterial scaffolds have set the stage for tissue engineering and regenerative therapy of the craniofacial complex. Furthermore, the recent approval by the US Food and Drug Administration (FDA; Rockville, MD, USA) of recombinant human BMPs for accelerating bone fusion in slow-healing fractures indicates that this protein family may prove useful in designing regenerative treatments in dental applications. In the near term, these advances are likely to be applied to endodontics and periodontal surgery; ultimately, they may facilitate approaches to regenerating whole teeth for use in tooth replacement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal and reiterative signaling during tooth morphogenesis.
Figure 2: Craniofacial structures and treatments.
Figure 3: BMP and TGFβ signaling ligands, receptors and transcription.
Figure 4: The three key elements for dental tissue engineering are signals for morphogenesis, progenitor/stem cells, and scaffolds of extracellular matrix components.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Thesleff, I. & Sharpe, P. Signalling networks regulating dental development. Mech. Dev. 67, 111–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Chai, Y. & Slavkin, H.C. Prospects for tooth regeneration in the 21st century: a perspective. Microsc. Res. Tech. 60, 469–479 (2003).

    Article  PubMed  Google Scholar 

  3. Cho, M.I. & Garant, P.R. Ultrastructural evidence of directed cell migration during initial cementoblast differentiation in root formation. J. Periodontal Res. 23, 268–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Jernvall, J. & Thesleff, I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92, 19–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Salazar-Ciudad, I. & Jernvall, J. A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl. Acad. Sci. USA 99, 8116–8120 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urist, M.R. Bone: formation by autoinduction. Science 150, 893–899 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. Reddi, A.H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 16, 247–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nakase, T. et al. Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J. Bone Miner. Res. 9, 651–659 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Bostrom, M.P. Expression of bone morphogenetic proteins in fracture healing. Clin. Orthop. S116–S123 (1998).

  10. Bostrom, M.P. et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J. Orthop. Res. 13, 357–367 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Helder, M.N. et al. Bone morphogenetic protein-7 (osteogenic protein-1, OP-1) and tooth development. J. Dent. Res. 77, 545–554 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Thomadakis, G., Ramoshebi, L.N., Crooks, J., Rueger, D.C. & Ripamonti, U. Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur. J. Oral Sci. 107, 368–377 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Saygin, N.E., Giannobile, W.V. & Somerman, M.J. Molecular and cell biology of cementum. Periodontol. 24, 73–98 (2000).

    Article  CAS  Google Scholar 

  14. Nakashima, M., Toyono, T., Murakami, T. & Akamine, A. Transforming growth factor-beta superfamily members expressed in rat incisor pulp. Arch. Oral Biol. 43, 745–751 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Tziafas, D., Smith, A.J. & Lesot, H. Designing new treatment strategies in vital pulp therapy. J Dent. 28, 77–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Nakashima, M., Nagasawa, H., Yamada, Y. & Reddi, A.H. Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev. Biol. 162, 18–28 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Nakashima, M., Mizunuma, K., Murakami, T. & Akamine, A. Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther. 9, 814–818 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Yokose, S. et al. Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif. Tissue Int. 66, 139–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Couble, M.L. et al. Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif. Tissue Int. 66, 129–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G. & Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 97, 13625–13630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miura, M. et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 100, 5807–5812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeda, K. et al. Expression of bone morphogenetic protein genes in the human dental pulp cells. Bone 15, 467–470 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Gu, K., Smoke, R.H. & Rutherford, R.B. Expression of genes for bone morphogenetic proteins and receptors in human dental pulp. Arch. Oral Biol. 41, 919–923 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Toyono, T., Nakashima, M., Kuhara, S. & Akamine, A. Temporal changes in expression of transforming growth factor-beta superfamily members and their receptors during bovine preodontoblast differentiation in vitro. Arch. Oral Biol. 42, 481–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Begue-Kirn, C. et al. Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int. J. Dev. Biol. 36, 491–503 (1992).

    CAS  PubMed  Google Scholar 

  26. Cho, M.I. & Garant, P.R. Development and general structure of the periodontium. Periodontol. 24, 9–27 (2000).

    Article  CAS  Google Scholar 

  27. Reddi, A.H. Bone matrix in the solid state: geometric influence on differentiation of fibroblasts. Adv. Biol. Med. Phys. 15, 1–18 (1974).

    Article  CAS  PubMed  Google Scholar 

  28. Reddi, A.H. & Huggins, C.B. Cyclic electrochemical inactivation and restoration of competence of bone matrix to transform fibroblasts. Proc. Natl. Acad. Sci. USA 71, 1648–1652 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sampath, T.K. & Reddi, A.H. Importance of geometry of the extracellular matrix in endochondral bone differentiation. J. Cell Biol. 98, 2192–2197 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Paralkar, V.M., Nandedkar, A.K., Pointer, R.H., Kleinman, H.K. & Reddi, A.H. Interaction of osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J. Biol. Chem. 265, 17281–17284 (1990).

    CAS  PubMed  Google Scholar 

  31. Reddi, A.H. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res. 3, 1–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Paine-Saunders, S., Viviano, B.L., Economides, A.N. & Saunders, S. Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089–2096 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Lu, L., Yaszemski, M.J. & Mikos, A.G. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J. Bone Joint Surg. Am. 83-A, S82–S91 (2001).

    Google Scholar 

  34. Uludag, H., Gao, T., Porter, T.J., Friess, W. & Wozney, J.M. Delivery systems for BMPs: factors contributing to protein retention at an application site. J. Bone Joint Surg. Am. 83-A, S128–S135 (2001).

    Google Scholar 

  35. Ripamonti, U., Ma, S. & Reddi, A.H. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 12, 202–212 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Kuboki, Y., Jin, Q. & Takita, H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Joint Surg. Am. 83-A, S105–S115 (2001).

    Google Scholar 

  37. Reddi, A.H. & Huggins, C.B. Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc. Soc. Exp. Biol. Med. 143, 634–637 (1973).

    Article  CAS  PubMed  Google Scholar 

  38. Wientroub, S. & Reddi, A.H. Influence of irradiation on the osteoinductive potential of demineralized bone matrix. Calcif. Tissue Int. 42, 255–260 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Nakashima, M. The induction of reparative dentine in the amputated dental pulp of the dog by bone morphogenetic protein. Arch. Oral Biol. 35, 493–497 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Nakashima, M. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and -4. J. Dent. Res. 73, 1515–1522 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Vainio, S., Karavanova, I., Jowett, A. & Thesleff, I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75, 45–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Nakashima, M. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and -4 with collagen matrix. Arch. Oral Biol. 39, 1085–1089 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Rutherford, R.B., Wahle, J., Tucker, M., Rueger, D. & Charette, M. Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch. Oral Biol. 38, 571–576 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Rutherford, R.B., Spangberg, L., Tucker, M., Rueger, D. & Charette, M. The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch. Oral Biol. 39, 833–838 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Veis, A. The role of dental pulp—thoughts on the session on pulp repair processes. J. Dent. Res. 64 Spec No, 552–554 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Rutherford, R.B. in Principles of Tissue Engineering. (eds. Lanza, R.P., Langer, R. & Vacanti, J.) 847–853 (Academic Press, San Diego, CA, 2000).

    Book  Google Scholar 

  47. Polson, A.M. & Proye, M.P. Fibrin linkage: a precursor for new attachment. J. Periodontol. 54, 141–147 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Gottlow, J., Nyman, S., Lindhe, J., Karring, T. & Wennstrom, J. New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J. Clin. Periodontol. 13, 604–616 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Ripamonti, U. et al. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth Factors 13, 273–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Ripamonti, U. & Duneas, N. Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast. Reconstr. Surg. 101, 227–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Sigurdsson, T.J. et al. Periodontal repair in dogs: recombinant human bone morphogenetic protein-2 significantly enhances periodontal regeneration. J. Periodontol. 66, 131–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Kinoshita, A., Oda, S., Takahashi, K., Yokota, S. & Ishikawa, I. Periodontal regeneration by application of recombinant human bone morphogenetic protein-2 to horizontal circumferential defects created by experimental periodontitis in beagle dogs. J. Periodontol. 68, 103–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Ripamonti, U. et al. Bone induction by BMPs/OPs and related family members in primates. J. Bone Joint Surg. Am. 83-A, S116–S127 (2001).

    Google Scholar 

  54. Ripamonti, U. & Reddi, A.H. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit. Rev. Oral Biol. Med. 8, 154–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, Y., Ma, G. & Li, D. Repair of large cranial defect using allogeneic cranial bone and bone morphogenetic protein. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 11, 8–9 (1995).

    CAS  PubMed  Google Scholar 

  56. Nevins, M., Kirker-Head, C., Wozney, J.A., Palmer, R. & Graham, D. Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int. J. Periodontics Restorative Dent. 16, 8–19 (1996).

    CAS  PubMed  Google Scholar 

  57. Margolin, M.D. et al. Maxillary sinus augmentation in the non-human primate: a comparative radiographic and histologic study between recombinant human osteogenic protein-1 and natural bone mineral. J. Periodontol. 69, 911–919 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Boyne, P.J. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J. Bone Joint Surg. Am. 83-A, S146–S150 (2001).

    Google Scholar 

  59. Cook, S.D., Salkeld, S.L. & Rueger, D.C. Evaluation of recombinant human osteogenic protein-1 (rhOP-1) placed with dental implants in fresh extraction sites. J. Oral Implantol. 21, 281–289 (1995).

    CAS  PubMed  Google Scholar 

  60. Cochran, D.L. et al. Radiographic analysis of regenerated bone around endosseous implants in the canine using recombinant human bone morphogenetic protein-2. Int. J. Oral Maxillofac. Implants 12, 739–748 (1997).

    CAS  PubMed  Google Scholar 

  61. Cochran, D.L., Schenk, R., Buser, D., Wozney, J.M. & Jones, A.A. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J. Periodontol. 70, 139–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Sigurdsson, T.J., Fu, E., Tatakis, D.N., Rohrer, M.D. & Wikesjo, U.M. Bone morphogenetic protein-2 for peri-implant bone regeneration and osseointegration. Clin. Oral Implants Res. 8, 367–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Hanisch, O., Tatakis, D.N., Boskovic, M.M., Rohrer, M.D. & Wikesjo, U.M. Bone formation and reosseointegration in peri-implantitis defects following surgical implantation of rhBMP-2. Int. J. Oral Maxillofac. Implants 12, 604–610 (1997).

    CAS  PubMed  Google Scholar 

  64. Bessho, K., Carnes, D.L., Cavin, R., Chen, H.Y. & Ong, J.L. BMP stimulation of bone response adjacent to titanium implants in vivo. Clin. Oral Implants Res. 10, 212–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Sykaras, N., Triplett, R.G., Nunn, M.E., Iacopino, A.M. & Opperman, L.A. Effect of recombinant human bone morphogenetic protein-2 on bone regeneration and osseointegration of dental implants. Clin. Oral Implants Res. 12, 339–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Sigurdsson, T.J. et al. Periodontal repair in dogs: evaluation of rhBMP-2 carriers. Int. J. Periodontics Restorative Dent. 16, 524–537 (1996).

    CAS  PubMed  Google Scholar 

  67. Cheng, S.L. et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif. Tissue Int. 68, 87–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J.Y. et al. Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J. Bone Joint Surg. Am. 83-A, 1032–1039 (2001).

    Article  CAS  Google Scholar 

  69. Olmsted, E.A. et al. Adenovirus-mediated BMP2 expression in human bone marrow stromal cells. J. Cell Biochem. 82, 11–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Franceschi, R.T., Wang, D., Krebsbach, P.H. & Rutherford, R.B. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J. Cell Biochem. 78, 476–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Krebsbach, P.H., Gu, K., Franceschi, R.T. & Rutherford, R.B. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum. Gene Ther. 11, 1201–1210 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Unger, E.C., Hersh, E., Vannan, M., Matsunaga, T.O. & McCreery, T. Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44, 45–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Nakashima, M., Tachibana, K., Iohara, K., Ito, M., Ishikawa, M. & Akamine, A. Induction of reparative dentin formation by ultrasound mediated gene delivery of growth/differentiation factor 11. Human Gene Therapy 14, 591–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Jin, Q.M., Anusaksathien, O., Webb, S.A., Rutherford, R.B. & Giannobile, W.V. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J. Periodontol. 74, 202–213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harle, J., Salih, V., Mayia, F., Knowles, J.C. & Olsen, I. Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound Med. Biol. 27, 579–586 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education (Japan), the National Institutes of Health (NIH) grant no. 1RO1 AR47345 and the Lawrence Ellison Chair in Musculoskeletal Molecular Biology. We thank Rita Rowlands for enthusiastic help. We thank Tim Moseley and K. Iohara for excellent help with illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Hari Reddi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, M., Reddi, A. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21, 1025–1032 (2003). https://doi.org/10.1038/nbt864

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing