Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis

Abstract

A coordinated functional genomics program was implemented to identify secreted polypeptides with therapeutic applications in the treatment of diabetes. Secreted factors were predicted from a diverse expressed-sequence tags (EST) database, representing >1,000 cDNA libraries, using a combination of bioinformatic algorithms. Subsequently, 8,000 human proteins were screened in high-throughput cell-based assays designed to monitor key physiological transitions known to be centrally involved in the physiology of type 2 diabetes. Bone morphogenetic protein-9 (BMP-9) gave a positive response in two independent assays: reducing phosphoenolpyruvate carboxykinase (PEPCK) expression in hepatocytes and activating Akt kinase in differentiated myotubes. Purified recombinant BMP-9 potently inhibited hepatic glucose production and activated expression of key enzymes of lipid metabolism. In freely fed diabetic mice, a single subcutaneous injection of BMP-9 reduced glycemia to near-normal levels, with maximal reduction observed 30 hours after treatment. BMP-9 represents the first hepatic factor shown to regulate blood glucose concentration. Using a combination of bioinformatic and high-throughput functional analyses, we have identified a factor that may be exploited for the treatment of diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection of secreted proteins.
Figure 2: Overview of diabetic screening.
Figure 3: High-throughput screening reveals previously unknown activities for BMP-9 in gluconeogenesis and Akt signaling.
Figure 4: BMP-9 regulates hepatic gluconeogenesis and lipid metabolism in vitro.
Figure 5: BMP-9 is a hypoglycemic agent in diabetic mice.
Figure 6: BMP-9 mediates insulin release and improves glucose tolerance.

Similar content being viewed by others

References

  1. Harris, M.I. et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 21, 518–524 (1998).

    Article  CAS  Google Scholar 

  2. Taylor, S.I. Deconstructing type 2 diabetes. Cell 97, 9–12 (1999).

    Article  CAS  Google Scholar 

  3. Saltiel, A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104, 517–529 (2001).

    Article  CAS  Google Scholar 

  4. Nordlie, R.C., Foster, J.D. & Lange, A.J. Regulation of glucose production by the liver. Annu. Rev. Nutr. 19, 379–406 (1999).

    Article  CAS  Google Scholar 

  5. Czech, M.P. & Corvera, S. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274, 1865–1868 (1999).

    Article  CAS  Google Scholar 

  6. Bergman, R.N. & Ader, M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol. Metab. 11, 351–356 (2000).

    Article  CAS  Google Scholar 

  7. Rorsman, P. The pancreatic β-cell as a fuel sensor: an electrophysiologist's viewpoint. Diabetologia 40, 487–495 (1997).

    Article  CAS  Google Scholar 

  8. Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  Google Scholar 

  9. Boguski, M.S. & Schuler, G.D. ESTablishing a human transcript map. Nat. Genet. 10, 369–371 (1995).

    Article  CAS  Google Scholar 

  10. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  11. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  12. Hogan, B.L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594 (1996).

    Article  CAS  Google Scholar 

  13. Eddy, S.R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    Article  CAS  Google Scholar 

  14. Barash, S., Wang, W. & Shi, Y. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem. Biophys. Res. Commun. 294, 835–842 (2002).

    Article  CAS  Google Scholar 

  15. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).

    Article  CAS  Google Scholar 

  16. Bairoch, A. & Boeckmann, B. The SWISS-PROT protein sequence data bank: current status. Nucleic Acids Res. 22, 3578–3580 (1994).

    Article  CAS  Google Scholar 

  17. Magnusson, I., Rothman, D.L., Katz, L.D., Shulman, R.G. & Shulman, G.I. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 (1992).

    Article  CAS  Google Scholar 

  18. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB-β). Science 292, 1728–1731 (2001).

    Article  CAS  Google Scholar 

  19. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  20. Kraegen, E.W., Cooney, G.J., Ye, J.M., Thompson, A.L. & Furler, S.M. The role of lipids in the pathogenesis of muscle insulin resistance and β-cell failure in type II diabetes and obesity. Exp. Clin. Endocrinol. Diabetes 109, S189–S201 (2001).

    Article  CAS  Google Scholar 

  21. Laakso, M. Insulin resistance and its impact on the approach to therapy of type 2 diabetes. Int. J. Clin. Pract. (Suppl.) 8–12 (2001).

  22. Castelein, H. et al. The peroxisome proliferator activated receptor regulates malic enzyme gene expression. J. Biol. Chem. 269, 26754–26758 (1994).

    CAS  PubMed  Google Scholar 

  23. Petty, K.J., Desvergne, B., Mitsuhashi, T. & Nikodem, V.M. Identification of a thyroid hormone response element in the malic enzyme gene. J. Biol. Chem. 265, 7395–7400 (1990).

    CAS  PubMed  Google Scholar 

  24. Barroso, I. & Santisteban, P. Insulin-induced early growth response gene (Egr-1) mediates a short term repression of rat malic enzyme gene transcription. J. Biol. Chem. 274, 17997–18004 (1999).

    Article  CAS  Google Scholar 

  25. Horton, J.D., Goldstein, J.L. & Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  Google Scholar 

  26. Becard, D. et al. Adenovirus-mediated overexpression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice. Diabetes 50, 2425–2430 (2001).

    Article  CAS  Google Scholar 

  27. Formisano, P. et al. Insulin-activated protein kinase Cβ bypasses Ras and stimulates mitogen-activated protein kinase activity and cell proliferation in muscle cells. Mol. Cell Biol. 20, 6323–6333 (2000).

    Article  CAS  Google Scholar 

  28. Machinal-Quelin, F., Dieudonne, M.N., Leneveu, M.C., Pecquery, R. & Giudicelli, Y. Pro-adipogenic effect of leptin on rat pre-adipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am. J. Physiol. Cell Physiol. 282, C853–C863 (2002).

    Article  CAS  Google Scholar 

  29. Blagoev, B. et al. Inhibition of adipocyte differentiation by resistin-like molecule? Biochemical characterization of its oligomeric nature. J. Biol. Chem. 277, 42011–42016 (2002).

    Article  CAS  Google Scholar 

  30. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    Article  CAS  Google Scholar 

  31. Dong, J. et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535 (1996).

    Article  CAS  Google Scholar 

  32. Song, J.J. et al. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology 136, 4293–4297 (1995).

    Article  CAS  Google Scholar 

  33. Miller, A.F., Harvey, S.A., Thies, R.S. & Olson, M.S. Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J. Biol. Chem. 275, 17937–17945 (2000).

    Article  CAS  Google Scholar 

  34. Helm, G.A. et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J. Neurosurg. 92, 191–196 (2000).

    CAS  PubMed  Google Scholar 

  35. Majumdar, M.K., Wang, E. & Morris, E.A. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J. Cell Physiol. 189, 275–284 (2001).

    Article  CAS  Google Scholar 

  36. Varady, P. et al. Morphologic analysis of BMP-9 gene therapy–induced osteogenesis. Hum. Gene Ther. 12, 697–710 (2001).

    Article  CAS  Google Scholar 

  37. Ploemacher, R.E., Engels, L.J., Mayer, A.E., Thies, S. & Neben, S. Bone morphogenetic protein 9 is a potent synergistic factor for murine hemopoietic progenitor cell generation and colony formation in serum-free cultures. Leukemia 13, 428–437 (1999).

    Article  CAS  Google Scholar 

  38. Lopez-Coviella, I., Berse, B., Krauss, R., Thies, R.S. & Blusztajn, J.K. Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289, 313–316 (2000).

    Article  CAS  Google Scholar 

  39. Lang, S., Goldstein, M.S. & Levine, R. Influence of the liver on uptake of glucose by peripheral tissues. Am. J. Physiol. 177, 447–450 (1955).

    Article  Google Scholar 

  40. Mertz, W. & Schwartz, K. An effect of liver extracts on glucose tolerance in rats. Am. J. Physiol. 203, 533–556 (1962).

    Google Scholar 

  41. Lautt, W.W. The HISS story overview: a novel hepatic neurohumoral regulation of peripheral insulin sensitivity in health and diabetes. Can. J. Physiol. Pharmacol. 77, 553–562 (1999).

    Article  CAS  Google Scholar 

  42. Fiscella, M. et al. TIP, a T cell factor identified using high-throughput screening approaches increases survival in an acute GVHD model. Nat. Biotechnol. 21, 302–307 (2003).

    Article  CAS  Google Scholar 

  43. Boguski, M.S., Lowe, T.M. & Tolstoshev, C.M. dbEST—database for “expressed sequence tags”. Nat. Genet. 4, 332–333 (1993).

    Article  CAS  Google Scholar 

  44. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  45. Pruitt, K.D. & Maglott, D.R. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 29, 137–140 (2001).

    Article  CAS  Google Scholar 

  46. Forrer, P., Tamaskovic, R. & Jaussi, R. Enzyme-linked immunosorbent assay for measurement of JNK, ERK, and p38 kinase activities. Biol. Chem. 379, 1101–1111 (1998).

    Article  CAS  Google Scholar 

  47. Wang, J.C., Stafford, J.M., Scott, D.K., Sutherland, C. & Granner, D.K. The molecular physiology of hepatic nuclear factor 3 in the regulation of gluconeogenesis. J. Biol. Chem. 275, 14717–14721 (2000).

    Article  CAS  Google Scholar 

  48. National Research Council. Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, DC, 1996).

Download references

Acknowledgements

We thank Viktor Roschke, Partha Chowdhury, Michael Bloom, and Kathy McCormick for technical assistance, and Paul Moore for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Birse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Grzegorzewski, K., Barash, S. et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21, 294–301 (2003). https://doi.org/10.1038/nbt795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing