Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fingerprinting the circulating repertoire of antibodies from cancer patients

Abstract

Recognition of molecular diversity in disease is required for the development of targeted therapies. We have developed a screening method based on phage display to select peptides recognized by the repertoire of circulating tumor-associated antibodies. Here we isolated peptides recognized by antibodies purified from the serum of prostate cancer patients. We identified a consensus motif, NXS/TDKS/T, that bound selectively to circulating antibodies from cancer patients over control antibodies from blood donors. We validated this motif by showing that positive serum reactivity to the peptide was specifically linked to disease progression and to shorter survival in a large patient population. Moreover, we identified the corresponding protein eliciting the immune response. Finally, we showed a strong and specific positive correlation between serum reactivity to the tumor antigen, development of metastatic androgen-independent disease, and shorter overall survival. Exploiting the differential humoral response to cancer through such an approach may identify molecular markers and targets for diagnostic and therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy and screening of index patients.
Figure 2: Reactivity between the serum from prostate cancer patients or control men and the selected peptide is stage-specific.
Figure 3: Immunohistological analyses of tumors from individuals with prostate cancer.
Figure 4: Identification of the corresponding antigen.
Figure 5: Cross-inhibition of binding activity of the patient-derived serum by GRP78 or CNVSDKSC.
Figure 6: Reactivity against GRP78 is a candidate marker of prostate cancer.
Figure 7: Expression pattern of the protein GRP78 and specific immunostaining inhibition.

Similar content being viewed by others

References

  1. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, K.C. New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr. Opin. Chem. Biol. 4, 16–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Phage Display: A Laboratory Manual (eds. Barbas, C.F. III, Burton, D.R., Scott, J.K. & Silverman, G.J.; Cold Spring Harbor Laboratory Press, New York, NY, 2000).

  4. Kolonin, M., Pasqualini, R. & Arap, W. Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5, 308–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Giordano, R.J., Cardó-Vila, M., Lahdenranta, J., Pasqualini, R. & Arap, W. Biopanning and rapid analysis of selective interactive ligands. Nat. Med. 7, 1249–1253 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Scott, J.K. & Smith, G.P. Searching for peptide ligands with an epitope library. Science 249, 386–390 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, G.P. & Scott, J.K. Libraries of peptides and proteins displayed on filamentous phage. Meth. Enzymol. 217, 228–257 (1993).

    Article  CAS  Google Scholar 

  8. Boon, T. & Old, L.J. Cancer tumor antigens. Curr. Opin. Immunol. 9, 681–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg, S.A. Progress in human tumour immunology and immunotherapy. Nature 411, 380–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol. 2, 293–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan, E.L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Statist. Assoc. 53, 457–481 (1958).

    Article  Google Scholar 

  12. Ganglberger, E. et al. Allergen mimotopes for 3-dimensional epitope search and induction of antibodies inhibiting human IgE. FASEB J. 14, 2177–2184 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Buhl, L., Szecsi, P.B., Gisselo, G.G. & Schafer-Nielsen, C. Surface immunoglobulin on B lymphocytes as a potential target for specific peptide ligands in chronic lymphocytic leukaemia. Br. J. Haematol. 116, 549–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Suphioglu C. et al. A novel grass pollen allergen mimotope identified by phage display peptide library inhibits allergen-human IgE antibody interaction. FEBS Lett. 502, 46–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Suphioglu C. et al. A novel grass pollen allergen mimotope identified by phage display peptide library inhibits allergen-human IgE antibody interaction. FEBS Lett. 502, 46–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Feige, U. & Polla, B.S. Hsp70—a multi-gene, multi-structure, multi-function family with potential clinical applications. Experientia 50, 979–986 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Melnick, J. & Argon, Y. Molecular chaperones and the biosynthesis of antigen receptors. Immunol. Today 16, 243–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, A.S. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, J.M. & Giaccia, A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  Google Scholar 

  20. Bicknell, R., Lewis, C.E. & Ferrara, N. (eds.) Tumour Angiogenesis (Oxford University Press, Oxford, 1997).

    Google Scholar 

  21. Alaiya, A.A. et al. Identification of proteins in human prostate tumor material by two-dimensional gel electrophoresis and mass spectrometry. Cell Mol. Life Sci. 58, 307–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, S.A. et al. Detection and distribution of heat shock proteins 27 and 90 in human benign and malignant prostatic tissue. Br. J. Urol. 77, 367–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Triantafilou, M., Fradelizi, D. & Triantafilou, K. Major histocompatibility class one molecule associates with glucose regulated protein (GRP) 78 on the cell surface. Hum. Immunol. 62, 764–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Triantafilou, K., Fradelizi, D., Wilson, K. & Triantafilou, M. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J. Virol. 76, 633–643 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao, R.V. et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514, 122–128 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava, P.K., Kumar, S. & Mendonca, C. in Principles and Practice of Biologic Therapy of Cancer (ed. Rosenberg, S.A.) 1–13 (Lippincott Williams & Wilkins, New York, 2001).

    Google Scholar 

  28. Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, Y.T. Cancer vaccine: identification of human tumor antigens by SEREX. Cancer J. Sci. Am. 6, S208–S217 (2000).

    Google Scholar 

  32. Tureci, O., Sahin, U. & Pfreundschuh, M. Serological analysis of human tumor antigens: molecular definition and implications. Mol. Med. Today 8, 342–9 (1997).

    Google Scholar 

  33. Sahin, U. et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. USA 92, 11810–11813 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sioud, M. & Hansen, M.H. Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur. J. Immunol. 3, 716–725 (2001).

    Article  Google Scholar 

  35. Crameri, R., Achatz, G., Weichel, M. & Rhyner, C. Direct selection of cDNAs by phage display. Methods Mol. Biol. 185, 461–469 (2002).

    CAS  PubMed  Google Scholar 

  36. Nakatsura, T. et al. Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem. Biophys. Res. Commun. 281, 936–944 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kouzmitcheva, G.A., Petrenko, V.A. & Smith, G.P. Identifying diagnostic peptides for Lyme disease through epitope discovery. Clin. Diagn. Lab. Immunol. 8, 150–160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Motti, C. et al. Recognition by human sera and immunogenicity of HBsAg mimotopes selected from an M13 phage display library. Gene 146, 191–198 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Puntoriero, G. et al. Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO J. 17, 3521–3533 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prezzi, C. et al. Selection of antigenic and immunogenic mimics of hepatitis C virus using sera from patients. J. Immunol. 156, 4504–4513 (1996).

    CAS  PubMed  Google Scholar 

  41. Scala, G. et al. Selection of HIV-specific immunogenic epitopes by screening random peptide libraries with HIV-1-positive sera. J. Immunol. 162, 6155–6161 (1999).

    CAS  PubMed  Google Scholar 

  42. Dybwad, A., Forre, O., Kjeldsen-Kragh, J., Natvig, J.B. & Sioud, M. Identification of new B cell epitopes in the sera of rheumatoid arthritis patients using a random nanopeptide phage library. Eur. J. Immunol. 23, 3189–3193 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Lunardi, C. et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat. Med. 6, 1183–1186 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Rowley, M.J. et al. Prediction of the immunodominant epitope of the pyruvate dehydrogenase complex E2 in primary biliary cirrhosis using phage display. J. Immunol. 164, 3413–3419 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Cortese, I. et al. Identification of peptides specific for cerebrospinal fluid antibodies in multiple sclerosis by using phage libraries. Proc. Natl. Acad. Sci. USA 93, 11063–11067 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mennuni, C. et al. Selection of phage-displayed peptides mimicking type 1 diabetes-specific epitopes. J. Autoimmun. 9, 431–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Schroder, F.H. et al. The TNM classification of prostate cancer. Prostate 4, 129–138 (1992).

    Article  CAS  Google Scholar 

  48. Gleason, D.F. in Urologic Pathology: The Prostate (ed. Tannenbaum, M.) 171–197 (Lea & Febiger, Philadelphia, PA, 1977).

    Google Scholar 

  49. Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C. in Classification and Regression Trees pp. 1–336 (Wadsworth International Group, Belmont, California, 1984).

    Google Scholar 

Download references

Acknowledgements

We thank Drs. Ricardo R. Brentani, Isaiah J. Fidler, and Donald M. McDonald for comments on the manuscript, and Mary and Howard Lester for support. Supported by grants from NIH (CA90270 and CA8297601 to R.P., CA90270 and CA9081001 to W.A.) and awards from the Gilson-Longenbaugh Foundation, AngelWorks Foundation, and CaP CURE (to R.P. and W.A.). P.J.M. is the recipient of a fellowship from the Susan G. Komen Breast Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadih Arap.

Ethics declarations

Competing interests

The University of Texas and its researchers W.A. and R.P. have equity in NTTX Biotechnology, which is subject to certain restrictions under university policy. The University of Texas manages the terms of these arrangements in accordance with its conflict-of-interest policies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mintz, P., Kim, J., Do, KA. et al. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21, 57–63 (2003). https://doi.org/10.1038/nbt774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing