Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear Hormone Receptors as Targets for New Drug Discovery

Abstract

There are two basic types of receptor transducing systems: those which utilize membrane bound receptors and are activated at the cell surface by the appropriate hormone and transmit their signal to the internae of the cell via a second messenger (i.e. cAMP), and those that utilize internal, cytoplasmic or nuclear receptors (intracellular receptors) which upon activation by hormones interact directly with DNA and alter the genetic program of a cell. This review focuses on the mechanism of action of these intracellular receptors and discusses how such an understanding is expected to facilitate the discovery of new therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, R.M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  CAS  Google Scholar 

  2. Beato, M. 1989. Gene regulation by steroid hormones. Cell 56: 335–344.

    Article  CAS  Google Scholar 

  3. O'Malley, B.W. and Tsai, M.J. 1992. Molecular pathways of steroid receptor action. Biol. Reprod. 46: 163–167.

    Article  CAS  Google Scholar 

  4. Sunderland, M.C. and Osborne, C.K. 1991. Tamoxifen in pre-menopausal patients with rnetastatic breast cancer: a review. J. Clin. Oncol. 9: 1283–1297.

    Article  CAS  Google Scholar 

  5. Rao, B.R. and Slotman, B.J. 1991. Endocrine factors in common epithelial ovarian cancer. Endocr. Rev. 12: 14–26.

    Article  CAS  Google Scholar 

  6. Dreicer, R. and Wilding, G. 1992. Steroid hormone agonists and antagonists in the treatment of cancer. Cancer Investigation 10: 27–41.

    Article  CAS  Google Scholar 

  7. Daneshgari, F. and Crawford, E.D. 1993. Endocrine therapy of advanced carcinoma of the prostate. Cancer 71: 1089–1097.

    Article  CAS  Google Scholar 

  8. Barzel, U.S. 1988 Estrogens in the prevention and treatment of postmenopausal osteoporosis: a review. Am. J. Med. 85: 847–850.

    Article  CAS  Google Scholar 

  9. Jordan, V.C., Fritz, N.F. and Tormey, D.C. 1987. Endocrine effects of adjuvant chemotherapy and long-term tamoxifen administration on node-positive patients with breast cancer. Cancer Res. 47: 624–630.

    CAS  PubMed  Google Scholar 

  10. Henderson, B.E., Ross, R.K. and Pike, M.C. 1993. Hormonal chemoprevention of cancer in women. Science 259: 633–638.

    Article  CAS  Google Scholar 

  11. Poisson, M., Pertuiset, B.F., Hauw, J.J., Philippon, J., Buge, A., Moguilewsky, M. and Philibert, D. 1983. Steroid hormone receptors in human meningiomas, gliomas and brain metastases. J. Neuro. One. 1: 179–189.

    Article  CAS  Google Scholar 

  12. Kettel, L.M., Murphy, A.A., Mortola, J.F., Liu, J.H., Ulmann, A. and Yen, S.S. 1991. Endocrine responses to long-term administration of the anti-progesterone RU486 in patients with pelvic endometriosis. Fert. and Ster. 56: 402–407.

    Article  CAS  Google Scholar 

  13. Baulieu, E.E. 1989. Contragestation and other clinical applications of RU486, an antiprogesterone at the receptor. Science 245: 1351–1357.

    Article  CAS  Google Scholar 

  14. De Voogt, H.J. 1992. The position of cyproterone acetate (CPA), a steroidal anti-androgen, in the treatment of prostate cancer. Prostate 4: 91–95.

    Article  CAS  Google Scholar 

  15. Benson, R.C. 1992. A rationale for the use of non-steroidal anti-androgens in the management of prostate cancer. Prostate 4: 85–90.

    Article  CAS  Google Scholar 

  16. McDonnell, D.P., Mangelsdorf, D.J., Pike, J.W., Haussler, M.R. and O'Malley, B.W. 1987. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235: 1214–1217.

    Article  CAS  Google Scholar 

  17. Fuller, P.J. 1991. The steroid receptor superfamily: mechanisms of diversity. FASEB J. 5: 3092–3099.

    Article  CAS  Google Scholar 

  18. Dobson, A.D.W., Conneely, O.M., Beattie, W.G., Maxwell, B.L., Mak, P., Tsai, M.-J., Schrader, W.T. and O'Malley, B.W. 1989. Mutational analysis of the chicken progesterone receptor. J. Biol. Chem. 264: 4207–4211.

    CAS  PubMed  Google Scholar 

  19. Tasset, D., Tora, L., Fromental, C., Scheer, E. and Chambon, P. 1990. Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62: 1177–1187.

    Article  CAS  Google Scholar 

  20. Metzger, D., Losson, R., Bornert, J.M., Lemoine, Y. and Chambon, P. 1992. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast. Nucleic Acids Res. 20: 2813–2817.

    Article  CAS  Google Scholar 

  21. Jenster, G., van der Korput, H.A.G.M., Vroonhoven, C.V., van der Kwast, T.H., Trapman, J. and Brinkmann, A.O. 1991. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endo. 5: 1396–1404.

    Article  CAS  Google Scholar 

  22. Laudet, V., Hanni, C., Coll, F.C., Catzeflis, F. and Stehelin, D. 1992. Evolution of the nuclear receptor gene superfamily. EMBO J. 11: 1003–1013.

    Article  CAS  Google Scholar 

  23. O'Malley, B.W. 1990. The steroid receptor superfamily: more excitement predicted for the future. Mol. Endo. 4: 363–369.

    Article  CAS  Google Scholar 

  24. Mangelsdorf, D.J., Ong, E.S., Dyck, J.A. and Evans, R.M. 1990. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345: 224–229.

    Article  CAS  Google Scholar 

  25. Heyman, R., Mangelsdorf, D.J., Dyck, J.A., Stein, R.B., Eichele, G., Evans, R.M. and Thaller, C. 1992. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406.

    Article  CAS  Google Scholar 

  26. Levin, A.A., Sturzenbecker, L.J., Kazmer, S., Bosakowski, T., Huselton, C., Allenby, G., Speck, J., Kratzasen, C., Rosenberger, M. and Lovey, A. 1992. 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 355: 359–361.

    Article  CAS  Google Scholar 

  27. Issemann, I. and Green, S. 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650.

    Article  CAS  Google Scholar 

  28. Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K. and Wahli, W. 1993. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA 90: 2160–2164.

    Article  CAS  Google Scholar 

  29. Sher, T., Yi, H.F., McBride, O.W. and Gonzalez, F.J. 1993. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 32: 5598–5604.

    Article  CAS  Google Scholar 

  30. Smith, D.F., and Toft, D.O. 1993. Steroid receptors and their associated proteins. Mol. Endo. 7: 4–11.

    CAS  Google Scholar 

  31. Picard, D., Kumar, V., Chambon, P. and Yamamoto, K.R. 1992. Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul. 1: 291–299.

    Article  Google Scholar 

  32. Sanchez, E.R., Hirst, M., Scherrer, L.C., Tang, H.Y., Welsh, M.J., Harmon, J.M., Simmons, S.S.J., Ringold, G.M. and Pratt, W.B. 1990. Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp 70 and hsp 90. J. Biol. Chem. 265: 20123–20130.

    CAS  PubMed  Google Scholar 

  33. Allan, G.F., Leng, X., Tsai, S.Y., Weigel, N.L., Edwards, D.P., Tsai, M.J. and O'Malley, B.W. 1992. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J. Biol. Chem. 267: 19513–19520.

    CAS  PubMed  Google Scholar 

  34. Allan, G.F., Tsai, S.Y., Tsai, M.J. and O'Malley, B.W. 1992. Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding. Proc. Natl. Acad. Sci. USA 89: 11750–11754.

    Article  CAS  Google Scholar 

  35. Vegeto, E., Allan, G.F., Schrader, W.T., Tsai, M.J., McDonnell, D.P. and O'Malley, B.W. 1992. Mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 69: 703–713.

    Article  CAS  Google Scholar 

  36. Lazar, M.A. and Chin, W.W. 1990. Nuclear thyroid hormone receptors. J. Clin. Invest. 86: 1777–1782.

    Article  CAS  Google Scholar 

  37. Dalman, F.C., Sturzenbecker, L.J., Levin, A.A., Lucas, D.A., Perdew, G.H., Petkovitch, M., Chambon, P., Grippo, J.F. and Pratt, W.B. 1991. Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form “docking” complexes with hsp90. Biochemistry 30: 5605–5608.

    Article  CAS  Google Scholar 

  38. Pike, J.W. 1982. Interaction between 1,25-dihydroxyvitamin D3 receptors and intestinal nuclei. J. Biol. Chem. 257: 6766–6775.

    CAS  PubMed  Google Scholar 

  39. Glass, C.K., Holloway, J.M., Devary, O.V. and Rosenfeld, M.G. 1988. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54: 313–323.

    Article  CAS  Google Scholar 

  40. Tsai, S.Y., Carlstedt-Duke, J., Weigel, N.L., Dahlman, K., Gustafsson, J.A., Tsai, M.J. and O'Malley, B.W. 1988. Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369.

    Article  CAS  Google Scholar 

  41. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J. and Evans, R.M. 1992. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355: 446–449.

    Article  CAS  Google Scholar 

  42. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J., Noonan, D., Heyman, R.A. and Evans, R.M. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774.

    Article  CAS  Google Scholar 

  43. Umesono, K. and Evans, R.M. 1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57: 1139–1146.

    Article  CAS  Google Scholar 

  44. Schule, R. and Evans, R.M. 1991. Cross-coupling of signal transduction pathways: zinc finger meets leucine zipper. Trends. Genet. 7: 377–381.

    Article  CAS  Google Scholar 

  45. Power, R.F., Conneely, O.M. and O'Malley, B.W. 1992. New insights into activation of the steroid hormone receptor superfamily. Trends. Pharmacol. Sci. 13: 318–323.

    Article  CAS  Google Scholar 

  46. Power, R.F., Lydon, J.P., Conneely, O.M. and O'Malley, B.W. 1991. Dopamine activation of an “orphan“ (COUP-TF) of the steroid receptor super-family. Science 252: 1546–1548.

    Article  CAS  Google Scholar 

  47. Power, R.F., Mani, S.D., Codina, J., Conneely, O.M. and O'Malley, B.W. 1991. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254: 1636–1639.

    Article  CAS  Google Scholar 

  48. Lydon, J.P., Power, R.F. and Conneely, O.M. 1992. Differential modes of activation define orphan subclasses with the steroid/thyroid receptor superfamily. Gene Expr. 2: 273–283.

    CAS  PubMed  Google Scholar 

  49. Smith, C.L., Conneely, O.M. and O'Malley, B.W. 1993 Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc. Natl. Acad. Sci. USA. In press

  50. Denner, L.A., Weigel, N.L., Schrader, W.T. and O'Malley, B.W. 1989. Hormone-dependent regulation of chicken progesterone receptor deoxyribonucleic acid binding and phosphorylation. Endocrinology 125: 3051–3058.

    Article  CAS  Google Scholar 

  51. Ali, S., Metzger, D., Bornert, J.M. and Chambon, P. 1993. Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J. 12: 1153–1160.

    Article  CAS  Google Scholar 

  52. Pike, J.W. and Sleator, N.M. 1985. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem. Biophys. Res.Commun. 131: 378–385.

    Article  CAS  Google Scholar 

  53. Denner, L.A., Weigel, N.L., Maxwell, B.L., Schrader, W.T. and O'Malley, B.W. 1990. Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250: 1740–1743.

    Article  CAS  Google Scholar 

  54. Liu, J., Farmer, J.D., Jr., Lane, W.S., Friedman, J., Weismann, I. and Schreiber, S.L. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815.

    Article  CAS  Google Scholar 

  55. Ignar-Trowbridge, D.M., Teng, C.T., Ross, K.A., Parker, M.G., Korach, K.S. and McLachlan, J.A. 1993. Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol. Endo. In press

  56. Aronica, S.M. and Katzenellenbogen, B.S. 1993. Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-1. Mol. Endo 7: 743–752.

    CAS  Google Scholar 

  57. Ignar-Trowbridge, D.M., Nelson, K.G., Bidwell, M.C., Curtis, S.W., Washbum, T.F., McLachlan, J.A. and Korach, K.S. 1992. Coupling of dual signaling pathways: Epidermal growth factor action involves the estrogen receptor. Proc. Natl. Acad. Sci. USA 89: 4658–4662.

    Article  CAS  Google Scholar 

  58. Berry, M., Metzger, D. and Chambon, P. 1990. Role of the two activating domains of the estrogen receptor in the cell-type and promoter-context dependent agonist activity of the anti-estrogen 4-hydroxytamoxifen. EMBO J. 9: 2811–2818.

    Article  CAS  Google Scholar 

  59. Klein-Hitpass, L., Cato, A.C.B., Henderson, D. and Ryffel, U.G. 1991. Two types of antiprogestins indentified by their differential action in transcriptionally active extracts from T47D cells. Nucl. Acids Res. 19: 1227–1233.

    Article  CAS  Google Scholar 

  60. Bagchi, M.K., Elliston, J.F., Tsai, S.Y., Edwards, D.P., Tsai, M.J. and O'Malley, B.W. 1988. Steroid hormone dependent interaction of human progesterone receptor with its target enhancer element. Mol. Endo. 2: 1221–1229.

    Article  CAS  Google Scholar 

  61. McDonnell, D.P., Nawaz, Z. and O'Malley, B.W. 1991. In situ distinction between steroid receptor binding and transactivation at a target gene. Mol. Cell Biol. 11: 4350–4355.

    Article  CAS  Google Scholar 

  62. McDonnell, D.P., Vegeto, E. and O'Malley, B.W. 1992. Identification of a negative regulatory function for steroid receptors. Proc. Natl. Acad. Sci. USA 89: 10563–10567.

    Article  CAS  Google Scholar 

  63. Keleher, C.A., Redd, M.J., Schultz, J., Carlson, M. and Johnson, A.D. 1992. Ssn6-Tup1 is a general represser of transcription in yeast. Cell 68: 709–719.

    Article  CAS  Google Scholar 

  64. Williams, F.E. and Trembly, R.J. 1990. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol. Cell Biol. 10: 6500–6511.

    Article  CAS  Google Scholar 

  65. Pham, T.A., Hwung, Y-R., Santiso-Mere, D., McDonnell, D.P. and O'Malley, B.W. 1992. Ligand-dependent and independent function of the transactivation regions of the human estrogen receptor in yeast. Mol. Endo. 6: 1043–1050.

    CAS  Google Scholar 

  66. Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E. and Chambon, P. 1989. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487.

    Article  CAS  Google Scholar 

  67. Berger, T.S., Parandoosh, Z., Perry, B.W. and Stein, R.B. 1992. Interaction of glucocorticoid analogues with the human glucocorticoid receptor. J. Steroid. Biochem. Mol. Biol. 41: 733–738.

    Article  CAS  Google Scholar 

  68. Wakeling, A.E., Dukes, M. and Bowler, J. 1991. A potent specific pure antiestrogen with clinical potential. Cancer Res. 51: 3867–3873.

    CAS  PubMed  Google Scholar 

  69. Elliston, J.F., Tsai, S.Y., O'Malley, B.W. and Tsai, M.J. 1990. Superactive estrogen receptors. Potent activators of gene expression. J. Biol. Chem. 265: 11517–11521.

    CAS  PubMed  Google Scholar 

  70. Pham, T.A., Elliston, J.F., Nawaz, Z., McDonnell, D.P., Tsai, M.J. and O'Malley, B.W. 1991. Anti-estrogen can establish nonproductive receptor complexes and alter chromatin structure at target enhancers. Proc. Natl. Acad. Sci. USA 88: 3125–3129.

    Article  CAS  Google Scholar 

  71. Kakizuka, A., Miller, W.H.J., Umesono, K., Warrell, R.P.J., Frankel, S.R., Murty, V.V., Dmitrovsky, E. and Evans, R.M. 1991. Chromosomal translocation t (15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66: 663–674.

    Article  CAS  Google Scholar 

  72. Allegretto, E.A., McClurg, M.R., Lazarchik, S.B., Clemm, D.L., Kerner, S.A., Elgort, M.G., Boehm, M.F., White, S.K., Pike, J.W. and Heyman, R.A. 1993. Transactivation properties of retinoic acid and retinoid X receptors in mammalian cells and yeast: correlation with hormone binding and effects of metabolism. J. Biol. Chem. In press.

  73. Lazar, M.A. 1991. Steroid and thyroid hormone receptors. Endocrinol. Metab. Clin. Am. 20: 681–695.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, D., Vegeto, E. & Gleeson, M. Nuclear Hormone Receptors as Targets for New Drug Discovery. Nat Biotechnol 11, 1256–1261 (1993). https://doi.org/10.1038/nbt1193-1256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1193-1256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing