Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain

Abstract

Small protein domains, capable of specific binding to different target proteins have been selected using combinatorial approaches. These binding proteins, called affibodies, were designed by randomization of 13 solvent-accessible surface residues of a stable α-helical bacterial receptor domain Z, derived from staphylococcal protein A. Repertoires of mutant Z domain genes were assembled and inserted into a phagemid vector adapted for monovalent phage display. Two libraries, each comprising approximately 4 × 107 transformants, were constructed using either an NN(G/T) or an alternative (C/A/G)NN degeneracy. Biopanning against the target proteins Taq DNA polymerase, human insulin, and a human apolipoprotein A-1 variant, showed that in all cases significant enrichments were obtained by the selection procedures. Selected clones were subsequently expressed in Escherichia coli and analyzed by SDS-PAGE, circular dichroism spectroscopy, and binding studies to their respective targets by biospecific interaction analysis. The affibodies have a secondary structure similar to the native Z domain and have micromolar dissociation constants (KD) for their respective targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clackson, T. and Wells, J.A. 1994. In vitro selection from protein and peptide libraries. Trends Biotechnol. 12: 173–184.

    Article  CAS  Google Scholar 

  2. Dunn, I.S. 1996. Phage display of proteins. Curr. Opin. Technol. 7: 547–553.

    CAS  Google Scholar 

  3. Pinilla, C., Appel, J., Blondelle, S., Dooley, C., Dorner, B., Eichksr, J. et al. 1995. A review of the utility of soluble peptide combinatorial libraries. Biopolymers. 37: 221–240.

    Article  CAS  Google Scholar 

  4. Griffith, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L. et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  Google Scholar 

  5. Vaughn, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C. et al. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 14: 309–314.

    Article  Google Scholar 

  6. Bianchi, E., Folgori, A., Wallace, A., Ncotra, M., Acali, S., Phalipon, A. et al. 1995. A conformationally homogeneous combinatorial peptide library. J. Mol. Biol. 247: 154–160.

    Article  CAS  Google Scholar 

  7. Ku, J. and Schultz, P.G. 1995. Alternate protein frameworks for molecular recognition. Proc. Natl. Acad. Sci. USA 92: 6552–6556.

    Article  CAS  Google Scholar 

  8. McConnell, S. and Hoess, R.H. 1995. Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250: 460–470.

    Article  CAS  Google Scholar 

  9. Martin, R., Toniatti, C., Salvatti, A.L., Ciliberto, G., Cortese, R. and Sollazzo, M. 1996. Coupling protein design and in vitro selection strategies: Improving specificity and affinity of a designed β-protein IL-6 antagonist. J. Mol. Biol. 255: 86–97.

    Article  CAS  Google Scholar 

  10. Lu, Z., Murray, K.S., Van Cleave, V., LaVallie, E.R., Stahl, M.L. and McCoy, J.M. 1995. Expression of thtoredoxin random peptide libraries on the Escherichia collcell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Bio/Technol. 13: 366–372.

    CAS  Google Scholar 

  11. Berkower, I. 1996. The promise and pitfalls of monoclonal antibody therapeutics. Curr. Opin. Biotechnol. 7: 622–628.

    Article  CAS  Google Scholar 

  12. Moks, T., Abrahmsén, I., Nilsson, B., Hellman, U., Sjöquist, J. and Uhlén, M. 1986. Staphylococcal protein A consists of five IgG-binding domains. Eur. J. Biochem. 156: 637–643.

    Article  CAS  Google Scholar 

  13. Ståhl, S. and Nygren, P. 1997. The use of gene fusions to protein A and protein G in immunology and biotechnology. Path. Biol. 45: 66–76.

    Google Scholar 

  14. Samuelsson, E., Moks, T., Nilsson, B. and Uhlén, M. 1994. Enhanced in vitro refolding of insulin-liki growth factor I using a solubilizing fusion partner. Biochemistry 33: 4207–4211.

    Article  CAS  Google Scholar 

  15. Samuelsson, E., Jonasson, P., Viklund, F., Nilsson, B. and Uhlén, M. 1996. Affinity-assisted in vivo folding of a secreted human peptide hormone in Escherichia coli. Nature Biotechnology 14: 751–755.

    Article  CAS  Google Scholar 

  16. Olsson, A., Eliasson, L., Guss, B., Nilsson, B., Hellman, U., Lindberg, M. and Uhlén, M. 1987. Structure and evolution of the repetitive gene encoding strepto-coccal protein G. Eur. J. Biochem. 168: 319–324.

    Article  CAS  Google Scholar 

  17. Alexander, P., Fahnestock, S., Lee, T., Orban, J. and Bryan, P. 1992. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 31: 3597–3603.

    Article  CAS  Google Scholar 

  18. Deisenhofer, J. 1981. Crystallographic refinement and atomic models of human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureusat 2. 9- and 2.8-Å resolution. Biochemistry 20: 2361–2370.

    Article  CAS  Google Scholar 

  19. Sauer-Eriksson, E.A., Kleywegt, G.J., Uhlén, M. and Jones, T.A. 1995. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3: 265–278.

    Article  CAS  Google Scholar 

  20. Tashiro, M. and Montelione, G.T. 1995. Structures of bacterial immunoglobulin-binding domains and their complexes with immunoglobulins. Curr. Opin. Struct. Biol. 5: 471–481.

    Article  CAS  Google Scholar 

  21. Kraulis, P.J., Jonasson, P., Nygren, P., Uhlén, M., Jendeberg, L., Nilsson, B. and Kördel, J. 1996. The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study. FEES Letters 378: 190–194.

    Article  CAS  Google Scholar 

  22. Jendeberg, L., Persson, B., Andersson, R., Karlsson, R., Uhlén, M. and Nilsson, B. 1995. Kinetic analysis of the interaction between protein A domain variants and human Fc using plasmon resonance detection. J. Molec. Recogntt. 8: 270–278.

    Article  CAS  Google Scholar 

  23. Jendeberg, L., Tashiro, M., Tejero, R., Lyons, B.A., Uhlén, M., Montelione, G.T. and Nilsson, B. 1996. The mechanism of binding Staphylococcal protein A to immunoglobin G does not involve helix unwinding. Biochemistry 35: 22–31.

    Article  CAS  Google Scholar 

  24. Gouda, H., Torrigoe, H., Saito, A., Sato, M., Arata, Y. and Shimada, I. 1992. Three-dimensional solution structure of the domain B of Staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry. 31: 9665–9672.

    Article  CAS  Google Scholar 

  25. Lyons, B.A., Tashiro, M., Cedergren, L., Nilsson, B. and Montelione, G. 1993. An improved strategy for determining resonance assignments for isotopically enriched proteins and its application to an engineered domain of Staphylococcal protein A. Biochemistry 32: 7839–7845.

    Article  CAS  Google Scholar 

  26. Ståhl, S., Nygren, P., Sjölander, A. and Uhlén, M. 1993. Engineered bacterial receptors in immunology. Curr. Opin. Immunol. 5: 272–277.

    Article  Google Scholar 

  27. Nilsson, B., Moks, T., Jansson, B., Abrahmsén, L., Elmblad, A., Holmgren, E. et al. 1987. A synthetic IgG-binding domain based on Staphylococcal protein A. ProtEng. 1: 107–113.

    CAS  Google Scholar 

  28. Cedergren, L., Andersson, R., Jansson, B., Uhlén, M. and Nilsson, B. 1993. Mutational analysis of the interaction between Staphylococcal protein A and human IgG,. Prot. Eng. 6: 441–448.

    Article  CAS  Google Scholar 

  29. Nord, K., Nilsson, J., Nilsson, B., Uhlén, M. and Nygren, P. 1995. A combinatorial library of an α-helical bacterial receptor domain. Prot. Eng. 8: 601–608.

    Article  CAS  Google Scholar 

  30. Djojonegoro, B.M., Benedik, M.J. and Willson, R.C. 1994. Bacteriophage surface display of an immunoglobulin-binding domain of Staphylococcus aureusprotein A. Bio/Technol. 12: 169–172.

    CAS  Google Scholar 

  31. Kushawaha, A., Chowdhury, P.S., Arora, K., Abrol, S. and Chaudhary, V.K. 1994. Construction and characterization of Mi3 bacteriophages displaying functional IgG-binding domains of Staphylococcal protein A. Gene 151: 45–51.

    Article  Google Scholar 

  32. Braisted, A.C. and Wells, J.A. 1996. Minimizing a binding domain from protein A. Proc. Natl. Acad. Sci. USA 93: 5688–5692.

    Article  CAS  Google Scholar 

  33. Nilsson, J., Bosnes, M., Larsen, R., Nygren, P., Uhlén, M. and Lundeberg, J. 1997. Heat-mediated activation of affinity immobilized TaqDNA polymerase. Biotechniques 22: 744–751.

    Article  CAS  Google Scholar 

  34. Calabresi, L., Vecchio, G., Longhi, R., Gianazza, E., Palm, G., Wadensten, H. et al. 1994. Molecular characterization of native and recomblnant apolipoprotein A-lmilano dimer. J. Biol.Chem. 269: 32168–32174.

    CAS  PubMed  Google Scholar 

  35. Nilsson, J., Larsson, M., Ståhl, S., Nygren, P. and Uhlén, M. 1996. Multiple affinity domains for the detection, purification and immobilization of recombinant proteins. J. Molec. Recognit. 9: 585–594.

    Article  CAS  Google Scholar 

  36. Richardson, J.H. and Marasco, W.A. 1995. Intracellular antibodies: development and therapeutic potential. Trends Biotechnol. 13: 306–310.

    Article  CAS  Google Scholar 

  37. Cunningham, B.C., Lowe, D.G., Li, B., Bennett, B.D. and Wells, J. 1994. Production of an atrial natriuretic peptide variant that is specific for type a receptor. EMBO J. 13: 2508–2515.

    Article  CAS  Google Scholar 

  38. Schier, R., Bye, J., Apell, G., McCall, A., Adams, G.P., Malmqvist, M. et al. 1996. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255: 28–33.

    Article  CAS  Google Scholar 

  39. Nilsson, J., Nilsson, P., Witliams, Y., Petterson, L., Uhlén, M. and Nygren, P. 1994. Competitive elution of protein A fusion proteins allows specific recovery under mild conditions. Eur. J. Biochem. 224: 103–108.

    Article  CAS  Google Scholar 

  40. Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M. and Winter, G. 1992. By-passing immunization: building high affinity human antibodies by chain shuffling. Bio/Technol. 10: 779–783.

    CAS  Google Scholar 

  41. Martin, F., Toniatti, C., Salvati, A.L., Venturini, S., Ciliberto, G., Cortese, R. and Sollazzo, M. 1994. The affinity-selection of a minibody polypeptide inhibitor of human interleukin-6. EMBO J. 13: 5303–5309.

    Article  CAS  Google Scholar 

  42. Markland, W., Ley, C., Lee, S.W. and Ladner, R.C. 1996. Iterative optimization of high-affinity protease inhibitors using phage display. 1. Plasmin. Biochemistry 35: 8045–8057.

    Article  CAS  Google Scholar 

  43. Markland, W., Ley, C. and Ladner, R.C. 1996. Iterative optimization of high-affinity protease inhibitors using phage display. 2.Plasma kallikrein and thrombin. Biochemistry 35: 8058–8067.

    Article  CAS  Google Scholar 

  44. Holliger, P., Prospero, T. and Winter, G., 1993. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90: 6444–6448.

    Article  CAS  Google Scholar 

  45. Nygren, P.-Å, Flodby, P., Andersson, R., Wigzell, H. and Uhlén, M. 1991. In vivo stabilization of a human recombinant CD4 derivative by fusion to a serum-albumin-binding receptor, pp. 363–368 in Vaccines 97. Chanock, R.M., Ginsberg, H.S., Brown, F., and Lerner, R.A. (eds.) Cold Spring Harbor, Cold Spring, New York.

    Google Scholar 

  46. Makrides, S., Nygren, P., Andrews, B., Ford, P., Evans, K.S., Hayman, E.G. et al. 1996. Extended in vivo half-life of human soluble complement receptor type I fused to serum albumin-binding receptor. J. Pharm. Exp. Therap. 277: 534–540.

    CAS  Google Scholar 

  47. Rüther, U. 1982. pUR 250 allows rapid chemical sequencing of both strands of inserts. Nucleic Acid Research 10: 5765–5772.

    Article  Google Scholar 

  48. Maurer, R., Meyer, B.J. and Ptashne, M. 1980. Gene regulation at the right operator (On) of bacteriophage lambda. —I. OR3 and autogenous negative control by represser. J. Mol. Biol. 139: 147–161.

    Article  CAS  Google Scholar 

  49. Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Add Res. 16: 6127–6145.

    Article  CAS  Google Scholar 

  50. Hultman, T., Ståhl, S., Homes, E. and Uhlén, M. 1989. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 17: 4937–4946.

    Article  CAS  Google Scholar 

  51. Gräslund, T., Nilsson, J., Lindberg, A.M., Uhlén, M. and Nygren, P.-Å 1997. Production of a thermostable DNA polymerase by site-specific cleavage of a heat-eluted affinity fusion protein. Protein Expression and Purification 9: 125–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nord, K., Gunneriusson, E., Ringdahl, J. et al. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat Biotechnol 15, 772–777 (1997). https://doi.org/10.1038/nbt0897-772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0897-772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing