Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

High-avidity human IgGκ monoclonal antibodies from a novel strain of minilocus transgenic mice

Abstract

Human immunoglobulin transgenic mice provide a method of obtaining human monoclonal antibodies (Mabs) using conventional hybridoma technology. We describe a novel strain of human immunoglobulin transgenic mice and the use of this strain to generate multiple high-avidity human sequence IgGκ Mabs directed against a human antigen. The light chain transgene is derived in part from a yeast artificial chromosome clone that includes nearly half of the germline human Vκ region. In addition, the heavy-chain transgene encodes both human μ and human γ1 constant regions, the latter of which is expressed via intratransgene class switching. We have used these animals to isolate human IgGκ Mabs that are specific for the human T-cell marker CD4, have high binding avidities, and are immunosuppressive in vitro. The human Mab-secreting hybridomas display properties similar to those of wild-type mice including stability, growth, and secretion levels. Mabs with four distinct specificities were derived from a single transgenic mouse, consistent with an extensive diversity in the primary repertoire encoded by the transgenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    CAS  PubMed  Google Scholar 

  2. Goldstein, G., Schindler, J., Tsai, H., Cosimi, A.B., Russell, P.S., Norman, D., et al. 1985. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N. Engl. J. Med. 313: 385–391.

    Article  Google Scholar 

  3. Jaffers, G., Fuller, T.C., Cosimi, A.B., Russell, P.S., Winn, H.J., and Colvin, R.B. 1986. Monoclonal antibody therapy: Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41: 572–578.

    Article  CAS  PubMed  Google Scholar 

  4. Ehrlich, P.H., Moustafa, Z.A., Justice, J.C., Harfeldt, K.E., Gadi, I.K., Sciorra, L.J., et al. 1988. Human and primate monoclonal antibodies for in vivo therapy. Clinical Chemistry 34: 1681–1688.

    CAS  PubMed  Google Scholar 

  5. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321: 522–525.

    Article  CAS  PubMed  Google Scholar 

  6. Newman, R., Albert, J., Anderson, D., Carner, K., Heard, C., Norton, F., et al. 1992. “Primatization” of recombinant antibodies for immunotherapy of human diseases: a macaque/human chimeric antibody against CD4. Bio/Technology 10: 1455–1460.

    CAS  Google Scholar 

  7. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hale, G., Clark, M.R., Marcus, R., Winter, G., Dyer, M.J.S., Phillips, J.M., et al. 1988. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody Campath-1H. Lancet i: 1394–1399.

    Article  Google Scholar 

  9. LoBuglio, A.F., Wheeler, R.H., Trang, J., Haynes, A., Rogers, K., Harvey, E.B., et al. 1989. Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response. Proc. Natl. Acad. Sci. USA 86: 4220–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knox, S.J., Levy, R., Hodgkinson, S., Bell, R., Brown, S., Wood, G.S., et al. 1991. Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with mycosis fungoides. Blood 77: 20–30.

    CAS  PubMed  Google Scholar 

  11. Maloney, D.G., Liles, T.M., Czerwinski, D.K., Waldichuk, C., Rosenberg, J., GrilloLopez, A., et al. 1994. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84: 2457–2466.

    CAS  PubMed  Google Scholar 

  12. Bruggemann, M., Caskey, H.M., Teale, C., Waldmann, H., Williams, G.T., Surani, M.A., et al. 1989. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc. Natl. Acad. Sci. USA 86: 6709–6713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruggemann, M., Spicer, C., Buluwela, L., Rosewell, I., Barton, S., Surani, M.A., et al. 1991. Human antibody production in transgenic mice: expression from 100 kb of the human IgH locus. Eur. J. Immunol. 21: 1323–1326.

    Article  CAS  PubMed  Google Scholar 

  14. Green, L.L., Hardy, M.C., Maynard-Currie, C.E., Tsuda, H., Louie, D.M., Mendez, M.J., et al. 1994. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nature Genetics 7: 13–21.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, L.D., Carmack, C.E., Schramm, S.R., Mashayekh, R., Higgins, K.M., Kuo, C.-C., et al. 1992. A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res. 20: 6287–6295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davies, N.P., Rosewell, I.R., Richardson, J.C., Cook, G.P., Neuberger, M.S., Brownstein, B.H., et al. 1993. Creation of mice expressing human antibody light chains by introduction of a yeast artificial chromosome containing the core region of the human immunoglobulin κ locus. Bio/Technology 11: 911–914.

    CAS  Google Scholar 

  17. Lonberg, N., Taylor, L.D., Harding, F.A., Trounstine, M., Higgins, K.M., Schramm, S.R., et al. 1994. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368: 856–859.

    Article  CAS  PubMed  Google Scholar 

  18. Choi, T., Hollenbach, P.W., Pearson, B.E., Ueada, R.M., Weddell, G.N., Kurahara, C.G., et al. 1993. Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome. Nature Genetics 4: 117–123.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, L.D., Carmack, C.E., Huszar, D., Higgins, K.M., Mashayekh, R., Sequar, G., et al. 1994. Human immunoglobulin transgenes undergo rearrangement, somatic mutation and class switching in mice that lack endogenous IgM. Internatl. Immunol. 6: 579–591.

    Article  CAS  Google Scholar 

  20. Wagner, S.D., Williams, G.T., Larson, T., Neuberger, M.S., Kitamura, D., Rajewsky, K., et al. 1994. Antibodies generated from human miniloci in transgenic mice. Nucleic Acids Res. 22: 1389–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wagner, S.D., Popov, A.V., Davies, S.L., Xian, J., Neuberger, M.S., and Bruggemann, M. 1994. The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur. J. Immunol. 24: 2672–2681.

    Article  CAS  PubMed  Google Scholar 

  22. Lonberg, N. and Huszar, D. 1995. Human antibodies from transgenic mice. Intern. Rev. Immunol. 13: 65–93.

    Article  CAS  Google Scholar 

  23. Collins, T.L., Hahn, W.C., Bierer, B.E., and Burakoff, S.J. 1993. CD4, CD8 and CD2 in T cell adhesion and signalling. Curr. Top. Microbiol. Immunol. 184: 223–233.

    CAS  PubMed  Google Scholar 

  24. Miceli, M.C. and Parnes, J.R. 1993. Role of CD4 and CD8 in T cell activation and differentiation. Adv. Immunol. 53: 59–122.

    Article  CAS  PubMed  Google Scholar 

  25. Doyle, C. and Strominger, J.L. 1987. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330: 256–258.

    Article  CAS  PubMed  Google Scholar 

  26. Saito, T., Weiss, A., Miller, J., Norcross, M.A., and Germain, R.N. 1987. Specific antigen-la activation of transfected human T cells expressing murine Ti αβ-human T3 receptor complexes. Nature 325: 125–127.

    Article  CAS  PubMed  Google Scholar 

  27. Wofsy, D. and Seaman, W.E. 1985. Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J. Exp. Med. 161: 378–391.

    Article  CAS  PubMed  Google Scholar 

  28. Wofsy, D. and Seaman, W.E. 1987. Reversal of advanced murine lupus in NZB/NZW F1 mice by treatment with monoclonal antibody to L3T4. J. Immunol. 138: 3247–3253.

    CAS  PubMed  Google Scholar 

  29. Waldor, M.K., Sriram, S., Hardy, R., Herzenberg, L.A., Herzenberg, L.A., Lanier, L., et al. 1985. Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227: 415–417.

    Article  CAS  PubMed  Google Scholar 

  30. Goldberg, D., Morel, P., Chatenoud, L., Boitard, C., Menkes, C.J., Bertoye, P.-H., et al. 1991. Immunological effects of high dose administration of anti-CD4 antibody in rheumatoid arthrits patients. J. Autoimmunity 4: 617–630.

    Article  CAS  Google Scholar 

  31. Herzog, C., Walker, C., Pichler, W., Aeschlimann, A., Wassmer, P., Stockinger, H., et al. 1987. Monoclonal anti-CD4 in arthritis. Lancet ii: 1461–1462.

    Article  Google Scholar 

  32. Horneff, G., Burmester, G.R., Emmrich, F., and Kalden, J.R. 1991. Treatment of rheumatoid arthritis with an anti-CD4 monoclonal antibody. Arthritis Rheum. 34: 129–140.

    Article  CAS  PubMed  Google Scholar 

  33. Reiter, C., Kakavand, B., Rieber, E.P., Schattenkirchner, M., Riethmuller, G., and Kruger, K. 1991. Treatment of rheumatoid arthritis with monoclonal CD4 antibody M-T151: Clinical results and immunopharmacologic effects in an open study, including repeated administration. Arthritis Rheum. 34: 525–536.

    Article  CAS  PubMed  Google Scholar 

  34. Wendling, D., Wijdenes, J., Racadot, E., and Morel-Fourrier, B. 1991. Therapeutic use of monoclonal anti-CD4 antibody in rheumatoid arthritis. J. Rheum. 18: 325–327.

    CAS  PubMed  Google Scholar 

  35. Van der Lubbe, P.A., Dijkmans, B.A.C., Markusse, H.M., Nassander, U., and Breedveld, F.C. 1995. A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis. Arthritis Rheum. 38: 1097–1106.

    Article  CAS  PubMed  Google Scholar 

  36. Van der Lubbe, P.A., Reiter, C., Breedveld, F.C., Kruger, K., Schattenkirchner, M., Sanders, M.E., et al. 1993. Chimeric CD4 monoclonal antibody cM-T412 as a therapeutic approach to rheumatoid arthritis. Arthritis Rheum. 36: 1375–1379.

    Article  CAS  PubMed  Google Scholar 

  37. Moreland, L.W., Bucy, R.P., Tilden, A., Pratt, P.W., LoBuglio, A.F., Khazaeli, M., et al. 1993. Use of a chimeric monoclonal anti-CD4 antibody in patients with refractory rheumatoid arthritis. Arthritis Rheum. 36: 307–318.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, J., Trounstine, M., Alt, F.W., Young, F., Kurahara, C., Loring, J.F., et al. 1993. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the Jh locus. Internatl. Immunol. 5: 647–656.

    Article  CAS  Google Scholar 

  39. Chen, J., Trounstine, M., Kurahara, C., Young, F., Kuo, C.-C., Xu, Y., et al. 1993. B cell development in mice that lack one or both immunoglobulin κ light chain genes. EMBO J. 12: 821–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schable, K.F., Thiebe, R., et al. 1992. The human immunoglobulin κ locus. Characterization of the duplicated A regions. Eur. J. Immunol. 22: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  41. Huber, C., Huber, E., Lautner-Reiske, A., Schable, K.F., and Zachau, H.G. 1993. The human immunoglobulin κ locus. Characterization of the partially duplicated L regions. Eur. J. Immunol. 23: 2860–2867.

    Article  CAS  PubMed  Google Scholar 

  42. Karlson, R., Michaelsson, A., and Mattsson, L. 1991. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J. Immunol. Meth. 145: 229–240.

    Article  Google Scholar 

  43. Engleman, E.G., Benike, C., Glickman, E., and Evans, R.L. 1981. Antibodies to membrane structures that distinguish suppressor/cytotoxic and helper T lymphocyte subpopulations block the mixed leukocyte reaction in man. J. Exp. Med. 153: 193–198.

    Article  Google Scholar 

  44. Merkenschlager, M., Buck, D., Beverley, P.C.L., and Sattentau, Q.J. 1990. Functional epitope analysis of the human CD4 molecule: The MHC Class II-dependent activation of resting T cells is inhibited by monoclonal antibodies to CD4 regardless whether or not they recognize epitopes involved in the binding of MHC Class II or HIV gp120. J. Immunol. 145: 2839–2845.

    CAS  PubMed  Google Scholar 

  45. Pargent, W., Meindl, A., Thiebe, R., Mitzel, S., and Zachau, H.G. 1991. The human κ locus. Characterization of the duplicated O regions. Eur. J. Immunol. 21: 1821–1827.

    Article  CAS  PubMed  Google Scholar 

  46. Weichhold, G.M., Ohnheiser, R., and Zachau, H.G. 1993. The human immunoglobulin κ locus consists of two copies that are organized in opposite polarity. Genomics 16: 503–511.

    Article  CAS  PubMed  Google Scholar 

  47. Rath, S., Nisonoff, A., Selsing, E., and Durdick, J.M. 1991. B cell abnormalities induced by a μ Ig transgene extend to L chain isotype usage. J. Immunol. 146: 2841–2847.

    CAS  PubMed  Google Scholar 

  48. Stall, A.M., Kroese, F.G.M., Gadus, F.T., Sieckmann, D.G., Herzenberg, L.A., and Herzenberg, L.A. 1988. Rearrangement and expression of endogenous immunoglobulin genes occur in many murine B cells expressing transgenic membrane IgM. Proc. Natl. Acad. Sci. USA 85: 3546–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morel, P., Nicolas, J.F., Wijdenes, J., and Revillard, J.P. 1992. Down-regulation of lymphocyte CD4 antigen expression by administration of anti-CD4 monoclonal antibody. Clin. Immunol. Immunopath. 64: 248–253.

    Article  CAS  Google Scholar 

  50. Dalesandro, M.R., Pak, K.-Y., Tam, S., Wilson, E., Looney, J.E., Riethmuller, G., et al. 1993. Effects of isotype and Fc region on in vitro function of a mouse/ human chimeric CD4 antibody. Internatl. Immunol. 5: 283–291.

    Article  CAS  Google Scholar 

  51. Larin, Z., Monaco, A.P., and Lehrach, H. 1991. Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl. Acad. Sci. USA 88: 4123–4127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marks, J., Tristem, M., Karpas, A., and Winter, G. 1991. Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21: 985–991.

    Article  CAS  PubMed  Google Scholar 

  53. Boyum, A. 1968. Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest. 21 (suppl.97) 51–76.

    CAS  Google Scholar 

  54. Fishwild, D.M. and Saria, E.A. 1991. Investigation and prevention of artifactual staining in flow cytometric analyses of whole blood samples from patients treated with H65-RTA, an anti-CD5 monoclonal antibody conjugated to ricin A chain. J. Immunol. Meth. 144: 27–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishwild, D., O'Donnell, S., Bengoechea, T. et al. High-avidity human IgGκ monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14, 845–851 (1996). https://doi.org/10.1038/nbt0796-845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0796-845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing