Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein Folding Intermediates and Inclusion Body Formation.

Abstract

The accumulation of newly synthesized polypeptide chains expressed from cloned genes as non native aggregates has become an important factor in the recovery of such proteins. Studies of both the refolding of denatured proteins in vitro, and of in vivo folding and maturation pathways, indicate that aggregates derive from specific partially folded intermediates and not from mature native, or fully unfolded proteins. The aggregation process in both homologous and heterologous cytoplasms may be driven by partial intracellular denaturation of intermediates, for example by high temperature, or by the absence of a critical factor—prosthetic group, sub-unit, chaperone—during the maturation process. All of these processes appear to be highly specific and subject to modification by genetic engineering of the intermediates, or alteration of their environment. This requires appreciation of the properties of such intermediates as distinct from the native states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simons, G., Remaut, E., Allet, B., Devos, R. and Fiers, W. 1984. High-level expression of human interferon gamma in Escherichia coli under control of the p1 promoter of bacteriophage lambda. Gene 28:55–64.

    Article  CAS  PubMed  Google Scholar 

  2. Schoner, E.G., Ellis, L.F. and Schoner, B.E. 1985. Isolation and purification of protein granules from E. coli cells overproducing bovine growth hormone. Bio/Technology 3:151–154.

    Article  CAS  Google Scholar 

  3. Taylor, G., Hoare, M., Gray, D.R., and Marston, F.A.O. 1986. Size and density of protein inclusion bodies. Bio/Technology 43:553–557.

    Google Scholar 

  4. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 2403:1–12.

    Article  Google Scholar 

  5. Creighton, T.E. 1978. Experimental studies of protein folding and unfolding. Prog. in Biophys. and Mol. Biol. 333:231–298.

    Google Scholar 

  6. Kim, P.S. and Baldwin, R.L. 1982. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding pathways. Ann. Rev. Biochem. 51:459–489.

    Article  CAS  PubMed  Google Scholar 

  7. King, J. 1986. Genetic analysis of protein folding pathways. Bio/Technology 4:297–303.

    CAS  Google Scholar 

  8. Wright, P.E., Dyson, H.J., and Lerner, R.A. 1988. Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry 27:7167–7175.

    Article  CAS  PubMed  Google Scholar 

  9. Carrell, R.W., Lehmann, H. and Hutchison, H.E. 1966. Haemoglobin Koln (beta-98 valine-methionine): an unstable protein causing inclusion-body anaemia. Nature 210:915–916.

    Article  CAS  PubMed  Google Scholar 

  10. Schneider, R.G., Ueda, S., Alperin, J.B., Brimhall, B., and Jones, R.T. 1969. Hemoglobin Sabine beta 91 (F 7) Leu-Pro. An unstable variant causing severe anemia with inclusion bodies. The New England Journal of Medicine 280:739–745.

    Article  CAS  PubMed  Google Scholar 

  11. Prouty, W.F. and Goldberg, A.L. 1972. Fate of abnormal proteins in E. coli: Accumulation in intracellular granules before catabolism. Nature New. Biol. 240:147–150.

    Article  CAS  PubMed  Google Scholar 

  12. Laemmli, U.K., Beguin, F., Gujer-Kellenberger, G. 1970. A Factor preventing the major head protein of bacteriophage T4 from random aggregation. J. Mol. Biol. 47:69–85.

    Article  CAS  PubMed  Google Scholar 

  13. Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C.P., Hendrix, R.W., and Ellis, R.J. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334.

    Article  CAS  PubMed  Google Scholar 

  14. Botterman, J. and Zabeau, M. 1985. High-level production of the EcoRI endonuclease under the control of the pL promoter of bacteriophage lambda. Gene 37:229–239.

    Article  CAS  PubMed  Google Scholar 

  15. Gribskov, M. and Burgess, R.R. 1983. Overexpression and purification of the sigma subunit of E. coli RNA polymerase. Gene 26:109–118.

    Article  CAS  PubMed  Google Scholar 

  16. Schoemaker, J.M., Brasnett, A.H., and Marston, F.A.O. 1985. Examination of calf prochymosin accumulation in E. coli.: Disulphide linkages are a structural component of prochymosin-containing inclusion bodies. EMBO J. 4:775–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kane, J.F. and Hartley, D.L. 1988. Formation of recombinant protein inclusion bodies in E. coli. Trends in Biotechnol. 6:95–101.

    Article  CAS  Google Scholar 

  18. Pigiet, V.P. and Schuster, B.J. 1986. Thioredoxin-catalyzed refolding of disulphide-containing proteins. Proc. Natl. Acad. Sci. USA 83:7643–7647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fahey, R.C., Hunt, J.S., and Windham, G.C. 1977. On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. J. Mol. Evol. 10:155–160.

    Article  CAS  PubMed  Google Scholar 

  20. Rudolph, R., Zettlmeissl, G., and Jaenicke, R. 1979. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs reactivation. 2. Reactivation of irreversibly denatured aggregates. Biochem. 18:5572–5575.

    Article  CAS  Google Scholar 

  21. Zettlmeissl, G., Rudolph, R., and Jaenicke, R. 1979. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation 1. Physical properties and kinetics of aggregation. Biochemistry 18:5567–5571.

    Article  CAS  PubMed  Google Scholar 

  22. Haase-Pettingell, C. and King, J. 1988. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation: A model for inclusion body formation. J. Biol. Chem. 263:4977–4983.

    CAS  PubMed  Google Scholar 

  23. Anfinsen, C.B., Haber, E., Sela, M., and White, F.H. 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chains. Proc. Natl. Acad. Sci. USA 47:1309–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anfinsen, C.B. 1973. Principles that govern the folding of protein chains. Science 181:223–230.

    Article  CAS  PubMed  Google Scholar 

  25. Anson, M.L., and Mirsky, A.E. 1931. The reversibility of protein coagulation. J. of Phys. Chem. 35:185–193.

    Article  CAS  Google Scholar 

  26. Perutz, M. 1980. “Unboiling” an egg, p. 14 (from “Discovery”, March 1940). In: Protein Folding. R. Jaenicke (Ed.). Elsevier North-Holland Biomedical Press.

    Google Scholar 

  27. London, J., Skrzynia, C., and Goldberg, M. 1974. Renaturation of E. Coll tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers. Eur. J. Biochem. 47:409–415.

    Article  CAS  PubMed  Google Scholar 

  28. Goldberg, M.E. and Zetina, C.R. 1980. Importance of interdomain interactions in the structure, function and stability of the F1 and F2 domains isolated from the β2 subunit of E. coli tryptophan synthase, p. 469–484. In: Protein Folding. R. Jaenicke (Ed.). Elsevier North-Holland Biomedical Press.

    Google Scholar 

  29. Jaenicke, R. and Rudolph, R. 1980. Folding and association of oligomeric enzymes, p. 525–546. In: Protein Folding. R. Jaenicke (Ed.). Elsevier North-Holland Biomedical Press.

    Google Scholar 

  30. Jaenicke, R. 1987. Folding and association of proteins. Prog. in Biophys. and Mol. Biol. 49:117–237.

    Article  CAS  Google Scholar 

  31. Mitraki, A., Betton, J.-M., Desmadril, M. and Yon, J. 1987. Quasi-irreversibility in the unfolding-refolding transition of phosphoglycerate kinase induced by guanidine hydrochloride. Eur. J. Biochem. 163:29–34.

    Article  CAS  PubMed  Google Scholar 

  32. Tandon, S. and Horowitz, P. 1986. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside. J. Biol. Chem. 261:15615–15681.

    CAS  PubMed  Google Scholar 

  33. Horowitz, P. and Simon, D. 1986. The enzyme rhodanese can be reactivated after denaturation in guanidinium chloride. J. Biol. Chem. 261:13887–13891.

    CAS  PubMed  Google Scholar 

  34. Horowitz, P. and Criscimagna, N.L. 1986. Low concentrations of guanidinium chloride expose apolar surfaces and cause differential perturbation in catalytic intermediates of rhodanese. J. Biol. Chem. 261:15652–15658.

    CAS  PubMed  Google Scholar 

  35. Havel, H.A., Kauffman, E.W., Plaisted, S.M., and Brems, D.N. 1986. Reversible self-association of bovine growth hormone during equilibrium unfolding. Biochemistry 25:6533–6538.

    Article  CAS  PubMed  Google Scholar 

  36. Brems, D.N., Plaisted, S.M., Kauffman, E.W., and Havel, H.A. 1986. Characterization of an associated equilibrium folding intermediate of bovine growth hormone. Biochemistry 25:6539–6543.

    Article  CAS  PubMed  Google Scholar 

  37. Brems, D.N., Plaisted, S.M., Havel, H.A. and Tomich, C-S.C. 1988. Stabilization of an associated folding and intermediate of bovine growth hormone by site-directed mutagenesis. Proc. Natl. Acad. USA 85:3367–3371.

    Article  CAS  Google Scholar 

  38. Brems, D.N., Plaisted, S.M., Kaufmann, E.W., Lund, M., and Lehrmann, S.R. 1987. Helical formation in isolated fragments of bovine growth hormone. Biochemistry 26:7774–7778.

    Article  CAS  PubMed  Google Scholar 

  39. Brems, D.N. 1988. Solubility of different folding conformers of bovine growth hormone. Biochemistry 27:4541–4546.

    Article  CAS  Google Scholar 

  40. Goldberg, M.E. 1985. The second translation of the genetic message: protein folding and assembly. Trends in Biochemical Sciences 10:388–391.

    Article  CAS  Google Scholar 

  41. Goldenberg, D.P., Smith, D.H., and King, J. 1983. Genetic analysis of the folding pathway for the tail spike protein of phage P22. Proc. Nat Acad. Sci. USA 80:7060–7064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldenberg, D. and King, J. 1982. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endhorhamnosidase ol bacteriophage P22. Proc. Natl. Acad. Sci. USA 79:3403–3407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goldenberg, D.P., Berget, P.B., and King, J. 1982. Maturation of the tailspike endorhamnosidase of Salmonella phage P22. J. Biol. Chem. 257:7864–7871.

    CAS  PubMed  Google Scholar 

  44. Goldenberg, D. and King, J. 1981. Temperature-sensitive mutants blocked in the folding or subunit assembly of bacteriophage P22 tail spike protein. II. Active mutant proteins matured at 30°C. J. Mol. Biol. 145:633–651.

    Article  CAS  PubMed  Google Scholar 

  45. Sturtevant, J.M., Yu, M-H., Hasse-Pettingell, C. and King, J. 1989. Thermostability of temperature-sensitive mutants of P22 tailspike protein. J. Biol. Chem. In Press.

  46. Fane, B.A. 1988. Genetic analysis of folding and maturation defects in the P22 tailspike endorhamnosidase. Ph.D. Thesis, Massachusetts Institute of Technology.

  47. Mizukami, T., Komatsu, Y., Hosoi, N., Hoh, S., and Oka, T. 1986. Production of active human interferon-beta in E. coli. I. Preferential production by lower culture temperature. Biotechnology Letts 8:605–610.

    Article  CAS  Google Scholar 

  48. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in E. colt, is favored by lower growth temperature. Bio/Technology 6:291–294.

    CAS  Google Scholar 

  49. Takagi, H., Morinaga, Y., Tsuchiya, M., Ikemura, H., and Inouye, M. 1988. Control of folding of proteins secreted by a high expression secretion vector, pIN-III-ompA: 16-fold increase in production of active subtilisin E in E. coli. Bio/Technology 6:948–950.

    CAS  Google Scholar 

  50. Ikemura, H., Takagi, H., and Inouye, M. 1987. Requirement of prosequence for the production of active subtilisin E in E. coli. J. Biol. Chem. 262:7859–7864.

    CAS  PubMed  Google Scholar 

  51. Copeland, C.S., Doms, R.W., Bolzeau, E.M., Webster, R.G., and Helenius, A. 1986. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell. Biol. 103:1179–1191.

    Article  CAS  PubMed  Google Scholar 

  52. Gething, M.-J., McCammon, K. and Sambrook, J. 1986. Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport. Cell 46:939–950.

    Article  CAS  PubMed  Google Scholar 

  53. Munro, S. and Pelham, H.R.B. 1986. An Hsp70-like protein in the ER: Identity with the 78 kD glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300.

    Article  CAS  PubMed  Google Scholar 

  54. Kozutsumi, Y., Segal, M., Normington, K., Gething, M-J., and Sambrook, J. 1988. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464.

    Article  CAS  PubMed  Google Scholar 

  55. Pelham, H.R.B. 1986. Speculations on the functions of the major heat-shock and glucose-regulated proteins. Cell 46:959–961.

    Article  CAS  PubMed  Google Scholar 

  56. Teipel, J.W. and Koshland, D.E. Jr. 1971. Kinetic aspects of conformational changes in proteins. I. Rate of regain of enzyme activity from denatured proteins. Biochemistry 10:792–805.

    Article  CAS  PubMed  Google Scholar 

  57. Rudolph, R., Gerschitz, J. and Jaenicke, R. 1978. Effect of zinc (II) on the refolding and reactivation of liver alcohol dehydrogenase. Eur. J. Biochem. 87:601–606.

    Article  CAS  PubMed  Google Scholar 

  58. Leutzinger, Y. and Beychock, S. 1981. Kinetics and mechanism of heme-induced refolding of human aipha-globin. Proc. Natl. Acad. Sci. USA 78:780–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martel, A. and Garel, J.R. 1984. Renaturation of the allosteric phosphofructokinase from E. coli. J. Biol. Chem. 259:4917–4921.

    CAS  PubMed  Google Scholar 

  60. Brambl, R. and Plesofsky-Vig, N. 1986. Pantothenate is required in Neurospora crassa for assembly of subunit peptides of cytochrome c oxidase and ATPase/ATP synthase. Proc. Natl. Acad. Sci. USA 83:3644–3648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Binkowski, G., and Simon, L.D. 1983. Host functions that affect T4 reproduction, p. 342–350. In: Bacteriophage T4 (C. K. Matthews, E. M. Kutter, G. Mosig, and P. B. Berget (Eds.). Am. Soc. Microbiol., Wash. D.C.

    Google Scholar 

  62. Georgopoulos, C., Tilly, K., and Casjens, S. 1983. Lambdoid phage head assembly, p. 279–304. In: Lambda II Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A. (Eds.). Cold Spring Harbor, New York.

    Google Scholar 

  63. King, J. and Laemmli, U.K. 1971. Polypeptides of the tail fibers of bacteriophage T4. J. Mol. Biol. 62:465–477.

    Article  CAS  PubMed  Google Scholar 

  64. Prevelige, P., Thomas, D. and King, J. 1988. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J. Mol. Biol. 202:743–757.

    Article  CAS  PubMed  Google Scholar 

  65. Bochkareva, E.S., Lissin, N.M. and Girshovich, A.S. 1988. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature 336:254–257.

    Article  CAS  PubMed  Google Scholar 

  66. Randall, L.L., Hardy, S.J.S., and Thom, J.R. 1987. Export of protein: A biochemical view. Ann. Rev. Microbiol. 41:507–541.

    Article  CAS  Google Scholar 

  67. Meyer, D.I. 1988. Preprotein conformation: The year's major theme in translocation studies. Trends Biochem. Sci. 13:471–474.

    Article  CAS  PubMed  Google Scholar 

  68. Collier, D.N., Bankaitis, V.A., Weiss, J.B., and Bassford, P.J. Jr. 1988. The anti-folding activity of SecB promotes the export of the E. coli maltose-binding protein. Cell 53:273–283.

    Article  CAS  PubMed  Google Scholar 

  69. Glenner, G.G. 1981. Amyloid deposits and amyloidosis. The beta-fibrilloses (first of two parts). New England Journal of Medicine 302:1283–1292.

    Article  Google Scholar 

  70. Kirschner, D.A., Inouye, H., Duffy, L.K., Sinclair, A., Lind, M., and Selkoe, D.J. 1987. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA. 84:6953–6957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitraki, A., King, J. Protein Folding Intermediates and Inclusion Body Formation.. Nat Biotechnol 7, 690–697 (1989). https://doi.org/10.1038/nbt0789-690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0789-690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing