Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Inhibition of human telomerase activity by peptide nucleic acids

Abstract

We report the inhibition of human telomerase activity by peptide nucleic acids (PNAs). PNAs recognize the RNA component of human telomerase (hTR) and inhibit activity of the enzyme with IC50 values in the picomolar to nanomolar range. Inhibition depends on targeting exact functional boundaries of the hTR template and is 10- to 50-fold more efficient than inhibition by analogous phosphorothioate (PS) oligomers. In contrast to high selectivity of inhibition by PNAs, PS oligomers inhibit telomerase in a non-sequence-selective fashion. These results demonstrate that PNAs can control the enzymatic activity of ribonucleoproteins and possess important advantages relative to PS oligomers in both the affinity and the specificity of their recognition. These observations should facilitate the development of effective inhibitors of telomerase activity and affinity probes of telomerase structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blackburn, E.H. 1991. Telomeres. Trends Biol. Sci. 16: 378–381.

    Article  CAS  Google Scholar 

  2. Greider, C.W. 1994. Mammalian telomere dynamics: healing, fragmentation shortening, and stabilization. Curr. Op. Genet, and Dev. 4: 203–211.

    Article  CAS  Google Scholar 

  3. Allsopp, R.C. et al. 1995. Telomere shortening is associated with cell division in vitro and in vivo. Exp. Cell Res. 220: 194–200.

    Article  CAS  Google Scholar 

  4. Levy, M., Allsopp, R.C., Futcher, A.B., Greider, C.W. and Harley, C.B. 1992. Telomere end-replication problem and cell aging. J. Mol. Biol. 225: 951–960.

    Article  CAS  Google Scholar 

  5. de Lange, T. et al. 1990. Structure and variability of human chromosome ends. Cell Biol. 10: 518–526.

    CAS  Google Scholar 

  6. Harley, C.B., Futcherm, A.B. and Greider, C.W. 1990. Telomeres shorten during aging of human fibroblasts. Nature 345: 458–460.

    Article  CAS  Google Scholar 

  7. Lingner, J., Cooper, J.R. and Cech, T.R. 1995. Telomerase and DMA end replication: no longer a lagging strand problem? Science 269: 1533–1524.

    Article  CAS  Google Scholar 

  8. Blackburn, E.H. 1992. Telomerases. Ann. Rev. Biochem. 61: 113–129.

    Article  CAS  Google Scholar 

  9. Hanish, J.R., Yanowitz, J.L. and de Lange, T. 1994. Stringent requirements for the formation of human telomeres. Proc. Natl. Acad. Sci. USA 91: 8861–8865.

    Article  CAS  Google Scholar 

  10. Kim, N.W. et al. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  CAS  Google Scholar 

  11. Bachetti, S. and Counter, C.M. 1995. Telomeres and telomerase in human cancer. Int. J. Oncol. 7: 423–432.

    Google Scholar 

  12. Shay, J.W. 1995. Aging and cancer: are telomerases and telomerase the connection. Mol. Med. Today 1: 378–384.

    Article  CAS  Google Scholar 

  13. Shay, J.W. and Wright, W.E. 1996. Telomerase activity in human cancer. Curr. Opin. Oncol. 8: 66–71.

    Article  CAS  Google Scholar 

  14. Harley, C.B. et al. 1994. Cell immortality, telomerase and cancer. Cold Spring Harbor Symposia on Quantitative Biology 59: 307–315.

    Article  CAS  Google Scholar 

  15. Hiyama, K., Hiyama, K., Yokoyama, T., Matsuura, Y., Piatyszek, M.A., and Shay, J.W. 1995. Correlation telomerase activity levels with human neuroblastoma outcomes. Nature Med. 1: 249–255.

    Article  CAS  Google Scholar 

  16. Broccoli, D., Young, J.W. and de Lange, T. 1995. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. USA 92: 9082–9086.

    Article  CAS  Google Scholar 

  17. Bryan, T.M., Engelzou, A., Gupta, J., Bachetti, S. and Reddel, R.R. 1995. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14: 4240.

    Article  CAS  Google Scholar 

  18. Feng, J. et al. 1995. The RNA component of human telomerase. Science 269: 1236–1239.

    Article  CAS  Google Scholar 

  19. Collins, K., Kobayashi, R. and Greider, C.W. 1995. Purification of tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81: 677–686.

    Article  CAS  Google Scholar 

  20. Shippen-Lentz, D. and Blackburn, E.H. 1990. Functional evidence for an RNA template in telomerase. Science 247: 546.

    Article  CAS  Google Scholar 

  21. Hanvey, J.C. et al. 1992. Antisense and antigene properties of peptide nucleic acids. Science 258: 1481–1485.

    Article  CAS  Google Scholar 

  22. Nielsen, P.E., Egholm, M., Berg, R.H., and Buchardt, O. 1991. Sequence-selective recognition of DMA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500.

    Article  CAS  Google Scholar 

  23. Egholm, M. et al. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365: 566–568.

    Article  CAS  Google Scholar 

  24. Demidov, V. et al. 1994. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48: 1310–1313.

    Article  CAS  Google Scholar 

  25. Piatyszek, M.A. et al 1995. Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol. Methods in Cell Science 17: 1–15.

    Article  Google Scholar 

  26. Wright, W.E., Shay, J.W. and Piatyszek, M.A. 1995. Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity, and sensitivity. Nucl. Acids Res. 23: 3794–3795.

    Article  CAS  Google Scholar 

  27. Morin, G.B. 1991. Recognition of a chromosome truncation site associated with α-thalassaemia by human telomerase. Nature 353: 454–456.

    Article  CAS  Google Scholar 

  28. Hamilton, S.E. and Corey, D.R. Unpublished results.

  29. Chu, B.C.F. and Orgel, L.E. 1991. Binding of hairpin and dumbbell DMA to transcription factors. Nucl. Acids Res. 24: 6958.

    Article  Google Scholar 

  30. Degols, G., Clarenc, J., Lebleu, B. and Leonetti, J. 1994. Ex vivo regulation of spe-cific gene expression by nanamolar concentration of double-stranded dumbbell oligonucleotides. J. Biol. Chem. 269: 16933–16937.

    CAS  PubMed  Google Scholar 

  31. Gold, L. 1995. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 270: 13581–13584.

    Article  CAS  Google Scholar 

  32. Bock, L.C., Griffin, L.C., Bock, J.A., Vermaas, E.H., and Toole, J.J., 1992. Selection of single-stranded DMA molecules that bind and inhibit human thrombin. Nature 355: 564–566.

    Article  CAS  Google Scholar 

  33. Wittung, P., Kajanus, J., Edwards, K., Nielsen, P., Norden, B., and Malmstom, B.G. 1995. Phospholipid membrane permeability of peptide nucleic acid. FEBS Lett. 356: 27–29.

    Article  Google Scholar 

  34. Dueholm, K.L. et al. 1994. Synthesis of peptide nucleic acid monomers containing the four natural nucleobases. J. Org. Chem. 59: 5767–5773.

    Article  CAS  Google Scholar 

  35. Thomson, S.A. et al. 1995. Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron 51: 6179–6194.

    Article  CAS  Google Scholar 

  36. Sen, D. and Gilbert, W. 1992. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 31: 65–70.

    Article  CAS  Google Scholar 

  37. Fang, G. and Cech, T.R. 1993. Characterization of a G-quartet formation reaction promoted by the β-subunit of the Oxytricha telomere-binding protein. Biochemistry 32: 11646–11657.

    Article  CAS  Google Scholar 

  38. Wang, Y. and Patel, D.J. 1993. Solution structure of the human telomeric repeat d[AG3(AG3)3] G-tetraplex. Structure 1: 263–281.

    Article  CAS  Google Scholar 

  39. Majumdar, C., Stein, C.S., Cohen, J.S., Broder, S. and Wilson, S.H. 1989. Stepwise mechanism of HIV reverse transcriptase: primer function of phosphorothioate oligodeoxyribonucleotides. Biochemistry 28: 1340–1346.

    Article  CAS  Google Scholar 

  40. Brown, D.A. et al. 1994. Effect of phosphorothioate modification of oligo-deoxynucleotides on specific protein binding. J. Biol. Chem. 269: 26801–26805.

    CAS  PubMed  Google Scholar 

  41. Benimetskaya, L. et al. 1995. Binding of phosphorothioate oligodeoxynucleotides to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin is β-chirality independent. Nucl. Acids Res. 23: 4239–4245.

    Article  CAS  Google Scholar 

  42. Krieg, A.M. and Stein, C.A. 1995. Phosphorothioate oligodeoxynucleotides: anti-sense or anti-protein. Antisense Res. Dev. 5: 241.

    Article  CAS  Google Scholar 

  43. Norton, J.C., Waggenspack, J.H., Varnum, E. and Corey, D.R. 1995. Targeting peptide nucleic acid protein-conjugates to structural features within duplex DNA. Bioorganic and Medicinal Chemistry 3: 437–445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, J., Piatyszek, M., Wright, W. et al. Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 14, 615–619 (1996). https://doi.org/10.1038/nbt0596-615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0596-615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing