Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Locating and characterizing binding sites on proteins

Abstract

This review article begins with a discussion of fundamental differences between substrates and inhibitors, and some of the assumptions and goals underlying the design of a new ligand to a target protein. An overview is given of the methods currently used to locate and characterize ligand binding sites on protein surfaces, with focus on a novel approach: multiple solvent crystal structures (MSCS). In this method, the X-ray crystal structure of the target protein is solved in a variety of organic solvents. Each type of solvent molecule serves as a probe for complementary binding sites on the protein. The probe distribution on the protein surface allows the location of binding sites and the characterization of the potential ligand interactions within these sites. General aspects of the application of the MSCS method to porcine pancreatic elastase is discussed, and comparison of the results with those from X-ray crystal structures of elastase/inhibitor complexes is used to illustrate the potential of the method in aiding the process of rational drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mattos, C. and Ringe, D. 1993. Multiple binding modes, pp. 226–254 in 3D QSAR in Drug Design—Theory, Methods and Applications. Kubinyi, H. (ed.). ESCOM Science Publishers, Leiden, The Netherlands.

    Google Scholar 

  2. Rydel, T.J., Tulinsky, A., Bode, W., and Huber, R. 1991. Refined structure of the hirudin thrombin complex. J. Mol. Biol. 221: 583–601.

    Article  CAS  Google Scholar 

  3. Qiu, X., Padmanabhan, K.P., Carperos, V.E., Tulinsky, A., Kline, T., Maraganore, J.M., and Fenton, J.W. II 1992. Structure of hirulog 3-thrombin complex and nature of the S′ subsites of substrates and inhibitors. Biochemistry 31: 11689–11697.

    Article  CAS  Google Scholar 

  4. Alien, K., Bellamacina, C.R., Ding, X., Jeffery, C., Mattos, C., Petsko, G.A., and Ringe, D. 1996. An experimental approach to mapping the binding surfaces of crystalline proteins. J. Phys. Chem. 100: 2605–2611.

    Article  Google Scholar 

  5. Meyer, E., Cole, G., Radhakrishnan, R., and Epp, O. 1988. Structure of native porcine pancreatic elastase at 1. 65 Å resolution. Acta Cryst. B44: 26–38.

    Article  CAS  Google Scholar 

  6. Kubinyi, H. 1993. The third dimension in QSAR: An introduction, pp. 1–10 in 3D QSAR in Drug—Theory, Methods and Applications. Kubinyi, H. (ed.). ESCOM Science Publishers, Leiden, The Netherlands.

    Google Scholar 

  7. Atlas, D. 1975. The active site of porcine pancreatic elastase. J. Mol. Biol. 93: 39–53.

    Article  CAS  Google Scholar 

  8. Renaud, A., Lestienne, P., Hughes, D.L., Bieth, J.G., and Dimicoli, J.-L. 1983. Mapping of the S′ subsites of porcine pancreatic and human leucocyte elastases. J. Biol. Chem. 258: 8312–8316.

    CAS  PubMed  Google Scholar 

  9. Mattos, C., Rasmussen, B., Ding, X., Petsko, G.A., and Ringe, D. 1994. Analogous inhibitors of elastase do not always bind analogously. Nature Struct Biol. 1: 55–58.

    Article  CAS  Google Scholar 

  10. Mattos, C., Giammona, D.A., Petsko, G.A., and Ringe, D. 1995. Structural analysis of the active site of porcine pancreatic elastase based on the X-ray crystal structures of complexes with trifluoroacetyl-dipeptide-anilide inhibitors. Biochemistry 34: 3193–3203.

    Article  CAS  Google Scholar 

  11. Wolfson, A.J., Kanaoka, M., Lau, F., and Ringe, D. 1993. Modularity of protein function: Cimeric interleukin 1 βs containing specific protease inhibitor loops retain function of both molecules. Biochemistry 32: 5327–5331.

    Article  CAS  Google Scholar 

  12. Kuntz, I.D., Meng, E.C., and Shoichet, B.K. 1994. Structure-based molecular design. Acc. Chem. Res. 27: 117–123.

    Article  CAS  Google Scholar 

  13. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., and Ferrin, T.E. 1982. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161: 269–288.

    Article  CAS  Google Scholar 

  14. Goodford, P.J. 1985. A computational approach for determining energetically favorable binding sites on biologically important macromolecules (GRID). J. Med. Chem. 28: 849–857.

    Article  CAS  Google Scholar 

  15. Miranker, A. and Karplus, M. 1991. Functionality maps of binding sites: A multiple copy simultaneous search method (MCSS). Proteins 11: 29–34.

    Article  CAS  Google Scholar 

  16. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 4: 187–217.

    Article  CAS  Google Scholar 

  17. Caflisch, A., Niederer, P., and Anliker, M., 1992. Carlo-docking of oligopep-tides to proteins. Proteins: Struct, Funct., and Genet 13: 223–230.

    Article  CAS  Google Scholar 

  18. Caflisch, A., Niederer, P., and Anliker, M., 1992. Monte Carlo-minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space. Proteins: Struct, Funct, and Genet 14: 102–109.

    Article  CAS  Google Scholar 

  19. Caflisch, A., Miranker, A., and Karplus, M. 1993. Multiple copy simultaneous search and construction of ligands in binding sites: Application to inhibitors of HIV-1 aspartic proteinase. J. Med. Chem. 36: 2142–2167.

    Article  CAS  Google Scholar 

  20. Wlodawer, A., Deisenhofer, J., and Huber, R. 1987. Comparison of two highly refined structures of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 193: 145–156.

    Article  CAS  Google Scholar 

  21. Wlodawer, A., Nachman, J., and Gilliland, G.L. 1987. Structure of form III crystals of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 198: 469–480.

    Article  CAS  Google Scholar 

  22. Karplus, P.A. and Faerman, C. 1994. Ordered water in macromolecular structure. Current Opinion in Structural Biology 4: 770–776.

    Article  CAS  Google Scholar 

  23. Caspar, L.D. and Badger, J. 1991. Plasticity of crystalline proteins. Current Biology 1: 877–882.

    Article  CAS  Google Scholar 

  24. Herron, J.N., Terry, A.H., Johnston, S., He, X., Guddat, L.W., Voss, E.W. Jr., and Edmundson, A.B. 1994. High resolution structures of the 4-4-20 Fab-fluorescein complex in two solvent systems: Effects of solvent on structure and antigen-binding affinity. Biophysical Journal 67: 2167–2183.

    Article  CAS  Google Scholar 

  25. Zhang, X.-J. and Matthews, B.W. 1994. Conservation of solvent-binding sites in 10 crystal forms of T4 lysozyme. Protein Science 3: 1031–1039.

    Article  CAS  Google Scholar 

  26. Otting, G., Liepinsh, E., and Wuthrich, K. 1991. Protein hydration in aqueous solution. Science 254: 974–980.

    Article  CAS  Google Scholar 

  27. Ernst, J.A., Clubb, R.T., Huan-Xiang, X., Gronenborn, A.M., and Clore, G.M. 1995. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science 267: 1813–1817.

    Article  CAS  Google Scholar 

  28. Teeter, M.M. 1991. Water-protein interactions: Theory and experiment. Annu. Rev. Biophys. Biophys. Chem. 20: 577–600.

    Article  CAS  Google Scholar 

  29. Roe, S.M. and Teeter, M.M. 1993. Patterns for prediction of hydration around polar residues in proteins. J. Mol. Biol. 229: 419–427.

    Article  CAS  Google Scholar 

  30. Jiang, J.-S. and Brunger, A.T. 1994. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243: 100–115.

    Google Scholar 

  31. Levitt, M. and Park, B.H. 1993. Water: now you see it, now you don't. Structure 1: 223–226.

    Article  CAS  Google Scholar 

  32. Mattos, C., Bellamacina, C.R., Peisach, E., Stanton, M., Griffith, D., Vitkup, D., Petsko, G.A., and Ringe, D. Application of the multiple solvent crystal structure method to porcine pancreatic elastase. Manuscript in preparation.

  33. Ringe, D. 1995. What makes a binding site a binding site? Current Opinion in Structural Biology 5: 825–829.

    Article  CAS  Google Scholar 

  34. Chervenak, M.C. and Toone, E.J. 1994. A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J. Am. Chem. Soc. 116: 10533–10539.

    Article  CAS  Google Scholar 

  35. Clackson, T. and Wells, J.A. 1995. A hot spot of binding energy in a hormone-receptor interface. Science 267: 383–386.

    Article  CAS  Google Scholar 

  36. Takahashi, L.H., Radhakrishnan, R., Rosenfield, R.E., Meyer, E.F., Trainor, D.A., and Stein, M. 1988. X-ray diffraction analysis of the inhibition of porcine pancreatic elastase by a peptidyl trifluoromethylketone. J. Mol. Biol. 201: 423–428.

    Article  CAS  Google Scholar 

  37. Peisach, E., Casebier, D., Gallion, S.L., Furth, P., Petsko, G.A., Hogan, J.C. Jr., and Ringe, D. 1995. Interaction of a peptidomimetic aminimide inhibitor with elastase. Science 269: 66–69.

    Article  CAS  Google Scholar 

  38. Kraulis, P.J. 1991. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattos, C., Ringe, D. Locating and characterizing binding sites on proteins. Nat Biotechnol 14, 595–599 (1996). https://doi.org/10.1038/nbt0596-595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0596-595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing