Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Engineered Biosynthesis of Novel Polyketides: Properties of the whiE Aromatase/Cyclase

Abstract

The ORFVI from the cluster of genes, which is responsible for the biosynthesis of the Streptomyces coelicolor spore pigment, the whiE cluster, has been described as a bifunctional aromatase/cyclase. In order to evaluate its potential use for generating novel polyketides, combinations of this gene with those encoding minimal polyketide synthase enzymes with or without a ketoreductase from S. coelicolor A3(2) were constructed and analyzed in vivo. Analysis of the polyketide products generated from these constructs indicates that the whiE-ORFVI enzyme has properties similar to those of TcmN, although the whiE aromatase/cyclase normally acts on a polyketide intermediate that is four carbons longer than the TcmN substrate. The whiE aromatase/cyclase can influence the regiospecificity of the first cyclization of unreduced, but not reduced, backbones and is also responsible for the second ring aromatization. An unusual new polyketide, EM18, was identified which is not seen in equivalent strains expressing the tcmN aromatase/cyclase or the act aromatase genes. The structure of EM18 suggests that the whiE-ORFVI product might have some unique properties within this family of polyketide synthase subunits, and may therefore be useful in the design of combinatorial biosynthetic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. O'Hagan, D. 1991. The Polyketide Metabolites. Ellis Horwood, Chichester, U.K.

    Google Scholar 

  2. Katz, L. and Donadio, S. 1993. Polyketide synthesis: prospects for hybrid antibiotics. Ann. Rev. Microbiol. 47: 875–912.

    Article  CAS  Google Scholar 

  3. Hallam, S.E., Malpartida, F. and Hopwood, D.A. 1988. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor . Gene 74: 305–320.

    Article  CAS  Google Scholar 

  4. Bibb, M.J., Biro, S., Motamedi, H., Collins, J.F. and Hutchinson, C.R. 1989. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcml genes provides key information about the enzymology of polyketide tetracenomycin C antibiotic biosynthesis. EMBO J. 8: 2727–2736.

    Article  CAS  Google Scholar 

  5. Sherman, D.H., Malpartida, F., Bibb, M.J., Kieser, H.M., Bibb, M.J. and Hopwood, D.A. 1989. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 8: 2717–2725.

    Article  CAS  Google Scholar 

  6. Davis, N.K. and Chater, K.F. 1990. Spore color in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol. Microbiol. 4: 1679–1692.

    Article  CAS  Google Scholar 

  7. Fernández-Moreno, M.A., Martínez, E., Boto, L., Hopwood, D.A. and Malpartida, F. 1992. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J. Biol. Chem. 267: 19278–19290.

    PubMed  Google Scholar 

  8. Summers, R.G., Wendt-Pienkowski, E., Motamedi, H. and Hutchinson, C.R. 1992. Nucleotide sequence of the tcmII-tcmIV region of the tetracenomycin biosynthetic gene cluster of Streptomyces glaucescens and evidence that the fcmN gene encodes a multifunctional cyclase-dehydratase-O-methyltransferase. J. Bacteriol. 174: 1810–1820.

    Article  CAS  Google Scholar 

  9. Bergh, S. and Uhlen, M. 1992. Analysis of a polyketide synthesis encoding gene cluster of Streptomyces curacoi . Gene 117: 131–136.

    Article  CAS  Google Scholar 

  10. Summers, R.G., Wendt-Pienkowski, E., Motamedi, H. and Hutchinson, C.R. 1993. The tcmVI region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase. J. Bacteriol. 175: 7571–7580.

    Article  CAS  Google Scholar 

  11. Blanco, G., Brian, P., Pereda, A., Méndez, C., Safas, J.A. and Chater, K.F. 1993. Hybridization and DNA sequence analyses suggest an early evolutionary divergence of related biosynthetic gene sets encoding polyketide antibiotics and spore pigments in Streptomyces spp . Gene 130: 107–116.

    Article  CAS  Google Scholar 

  12. Yu, T.W., Bibb, M.J., Revill, W.P. and Hopwood, D.A., 1994. Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus . J. Bacteriol. 176: 2627–2634.

    Article  CAS  Google Scholar 

  13. Bibb, M.J., Sherman, D.H., Omura, S. and Hopwood, D.A., 1994. Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene 142: 31–39.

    Article  CAS  Google Scholar 

  14. Kim, E.S., Bibb, M.J., Butler, M.J., Hopwood, D.A. and Sherman, D.H. 1994. Sequences of the oxytetracycline polyketide synthase-encoding otc genes from Streptomyces rimosus . Gene 141: 141–142.

    Article  CAS  Google Scholar 

  15. Ye, J., Dickens, M.L., Plater, R., Li, Y., Lawrence, J. and Strohl, W.R. 1994. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J. Bacteriol. 176: 6270–6280.

    Article  CAS  Google Scholar 

  16. Grim, A., Madduri, K., Ali, A. and Hutchinson, C.R. 1994. Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151: 1–10.

    Article  Google Scholar 

  17. McDaniel, R., Khosla, E., Hopwood, D.A. and Khosla, C. 1993. Engineered biosynthesis of novel polyketides. Science 262: 1546–1550.

    Article  CAS  Google Scholar 

  18. McDaniel, R., Khosla, E., Hopwood, D.A. and Khosla, C. 1993. Engineered biosynthesis of novel polyketides: manipulation and analysis of an aromatic polyketide synthase with unproven catalytic specificities. J. Am. Chem. Soc. 115: 11671–11675.

    Article  CAS  Google Scholar 

  19. Fu, H., Khosla, E., Hopwood, D.A. and Khosla, C. 1994. Engineered biosynthesis of novel polyketides: dissection of the catalytic specificity of the act ketoreductase. J. Am. Chem. Soc. 116: 4166–4170.

    Article  CAS  Google Scholar 

  20. Fu, H., Hopwood, D.A. and Khosla, C. 1994. Engineered biosynthesis of novel polyketides: evidence for temporal, but not regiospecific, control of cyclization of an aromatic polyketide precursor. Chem. Biol. 1: 205–210.

    Article  CAS  Google Scholar 

  21. Fu, H., McDaniel, R., Hopwood, D.A. and Khosla, C. 1994. Engineered biosynthesis of novel polyketides: stereochemical course of two reactions catalyzed by a polyketide synthase. Biochemistry 33: 9321–9326.

    Article  CAS  Google Scholar 

  22. Fu, H., Khosla, E., Hopwood, D.A. and Khosla, C. 1994. Relaxed specificity of the oxytetracycline polyketide synthase for an acetate primer in the absence of a malonamyl primer. J. Am. Chem. Soc. 116: 6443–6444.

    Article  CAS  Google Scholar 

  23. McDaniel, R., Khosla, E., Hopwood, D.A. and Khosla, C. 1994. Engineered biosynthesis of novel polyketides: the actVII and actIV genes encode aromatase and cyclase enzymes, respectively. J. Am. Chem. Soc. 116: 10855–10859.

    Article  CAS  Google Scholar 

  24. McDaniel, R., Khosla, E., Fu, H., Hopwood, D.A. and Khosla, C. 1994. Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc. Natl. Acad. Sci. USA. 91: 11542–11546.

    Article  CAS  Google Scholar 

  25. McDaniel, R., Hutchinson, C.R. and Khosla, C. Engineered biosynthesis of novel polyketides: analysis of tcmN function in tetracenomycin biosynthesis. J. Am. Chem. Soc. 117: 6805–6810.

    Article  CAS  Google Scholar 

  26. McDaniel, R., Khosla, E., Hopwood, D.A. and Khosla, C. 1995. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375: 549–554.

    Article  CAS  Google Scholar 

  27. Yu, T.-W. 1995. Physical and functional studies of polyketide synthesis genes of Streptomyces . Ph.D. thesis, University of East Anglia, Norwich, U.K.

  28. Tsoi, C.J. and Khosla, C. 1995. Combinatorial biosynthesis of “unnatural” natural products: the polyketide example. Chem. & Biol. 2: 355–362.

    Article  CAS  Google Scholar 

  29. Cerdá-Olmedo, E. 1994. The genetics of chemical diversity. Crit. Revs. in Microbiol. 20: 151–160.

    Article  Google Scholar 

  30. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  31. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M. and Schrempf, H. 1985. Genetic Manipulation of Streptomyces: A Laboratory Manual. The John Innes Foundation: Norwich, U.K.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, M., Fu, H., Khosla, C. et al. Engineered Biosynthesis of Novel Polyketides: Properties of the whiE Aromatase/Cyclase. Nat Biotechnol 14, 335–338 (1996). https://doi.org/10.1038/nbt0396-335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0396-335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing