Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor antigen–specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor–modified T cells

A Corrigendum to this article was published on 01 October 2006

Abstract

High-level systemic delivery of viral vectors to tumors has proved problematic as a result of immune neutralization, nonspecific adhesion, and clearance of circulating viral particles. Some cell types localize to tumors in response to particular biological properties associated with tumor growth. Their use to deliver viral vectors to tumors would allow precious viral stocks to be protected until they can be released at high local concentrations. Here, we describe a mechanism by which retroviral vector production by T cells can be regulated by a tumor-specific trigger through engagement of a chimeric immune receptor (CIR) with its target antigen. The virus that is released from the T cells can also be transcriptionally targeted. Finally, we show that it is possible to use vector-loaded, antigen-triggered human T cells as therapeutic, tumor-specific vector delivery cells in models of both local intratumoral and systemic delivery to both lung and liver metastases. This strategy incorporates multiple levels of targeting into the delivery system at the stages of surface targeting, viral production, and gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retroviral vectors.
Figure 2: Antigen-specific induction of transcriptionally targeted GFP retrovirus from Jurkat T cells.
Figure 3: Antigen-specific induction of HSVtk-containing retroviral vectors leads to CEA+ selective tumor cell killing.
Figure 4: Retroviral production from Jurkat.CEA cells is optimal between 6 and 12 h following coculture with antigen-positive cells.
Figure 5: Human T cells can act as antigen-specific retroviral producer cells in vivo.

Similar content being viewed by others

References

  1. Verma, I. & Somia, N. Gene therapy—promises, problems and prospects. Nature 389, 239–242 (1997).

    Article  CAS  Google Scholar 

  2. Vile, R.G., Russell, S.J. & Lemoine, N.R. Cancer gene therapy: hard lessons and new courses. Gene Ther. 7, 2–8 (2000).

    Article  CAS  Google Scholar 

  3. Russell, S.J. & Cosset, F.-J. Modifying the host range properties of retroviral vectors. J. Gene Med. 1, 300–311 (1999).

    Article  CAS  Google Scholar 

  4. Grill, J. et al. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin. Cancer Res. 7, 641–650 (2001).

    CAS  PubMed  Google Scholar 

  5. Krasnykh, V., Belousova, N., Korokhov, N., Mikheeva, G. & Curiel, D.T. Genetic Targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J. Virol. 75, 4176–4183 (2001).

    Article  CAS  Google Scholar 

  6. Wu, P. et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol. 74, 8635–8647 (2000).

    Article  CAS  Google Scholar 

  7. Kirn, D., Martuza, R.L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med. 7, 781–787 (2001).

    Article  CAS  Google Scholar 

  8. Alemany, R., Balague, C. & Curiel, D.T. Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18, 723–727 (2000).

    Article  CAS  Google Scholar 

  9. Takeuchi, Y. et al. Sensitization of cells and retroviruses to human serum by (α1-3) galactosyltransferase. Nature 379, 85–88 (1996).

    Article  CAS  Google Scholar 

  10. Chirmule, N. et al. Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40–CD40 ligand interactions. J. Virol. 74, 3345–3352 (2000).

    Article  CAS  Google Scholar 

  11. Paillard, F. Circumventing adenovirus immune response to achieve long-term correction of genetic diseases. Hum. Gene Ther. 9, 454–456 (1998).

    CAS  PubMed  Google Scholar 

  12. Pizzato, M., Marlow, S.A., Blair, E.D. & Takeuchi, Y. Initial binding of murine leukemia virus particles to cells does not require specific Env-receptor interaction. J. Virol. 73, 8599–8611 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alemany, R., Suzuki, K. & Curiel, D.T. Blood clearance rates of adenovirus type 5 in mice. J. Gen. Virol. 81(Pt 11), 2605–2609 (2000).

    Article  CAS  Google Scholar 

  14. Griffiths, L. et al. The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 7, 255–262 (2000).

    Article  CAS  Google Scholar 

  15. Carta, L. et al. Engineering of macrophages to produce IFN-γ in response to hypoxia. J. Immunol. 166, 5374–5380 (2001).

    Article  CAS  Google Scholar 

  16. Pastorino, S., Massazza, S., Cilli, M., Varesio, L. & Bosco, M.C. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Ther. 8, 431–441 (2001).

    Article  CAS  Google Scholar 

  17. Rosenberg, S.A. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat. Rep. 68, 233–255 (1984).

    CAS  PubMed  Google Scholar 

  18. Ioannides, C.G. & Whiteside, T.L. T cell recognition of human tumors: implications for molecular immunotherapy of cancer. Clin. Immunol. Immunopathol. 66, 91–106 (1993).

    Article  CAS  Google Scholar 

  19. Melief, C.J. Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv. Cancer Res. 58, 143–175 (1992).

    Article  CAS  Google Scholar 

  20. Whiteside, T.L. Monitoring of antigen-specific cytolytic T lymphocytes in cancer patients receiving immunotherapy. Clin. Diag. Lab. Immunol. 7, 327–332 (2000).

    CAS  Google Scholar 

  21. Yee, C. et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J. Exp. Med. 192, 1637–1644 (2000).

    Article  CAS  Google Scholar 

  22. Yee, C., Riddell, S.R. & Greenberg, P.D. In vivo tracking of tumor-specific T cells. Curr. Opin. Immunol. 13, 141–146 (2001).

    Article  CAS  Google Scholar 

  23. Di Carlo, E. et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97, 339–345 (2001).

    Article  CAS  Google Scholar 

  24. Rosenberg, S.A. The immunotherapy and gene therapy of cancer. J. Clin. Onc. 10, 180–199 (1992).

    Article  CAS  Google Scholar 

  25. Gomez-Navarro, J. et al. Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther. 7, 43–52 (2000).

    Article  CAS  Google Scholar 

  26. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999).

    Article  CAS  Google Scholar 

  27. Boon, T. & van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183, 725–729 (1996).

    Article  CAS  Google Scholar 

  28. Altenschmidt, U., Klundt, E. & Groner, B. Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J. Immunol. 159, 5509–5515 (1997).

    CAS  Google Scholar 

  29. Bolhuis, R.L. & Gratama, J.W. Genetic re-targeting of T lymphocyte specificity. Gene Ther. 5, 1153–1155 (1998).

    Article  CAS  Google Scholar 

  30. Brocker, T., Riedinger, M. & Karjalainen, K. Redirecting the complete T cell receptor/CD3 signaling machinery towards native antigen via modified T cell receptor. Eur. J. Immunol. 26, 1770–1774 (1996).

    Article  CAS  Google Scholar 

  31. Eshhar, Z., Waks, T., Gross, G. & Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  Google Scholar 

  32. Hombach, A. et al. A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA. Gene Ther. 6, 300–304 (1999).

    Article  CAS  Google Scholar 

  33. Weijtens, M.E., Willemsen, R.A., Valerio, D., Stam, K. & Bolhuis, R.L. Single chain Ig/γ gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J. Immunol. 157, 836–843 (1996).

    CAS  Google Scholar 

  34. Alvarez-Vallina, L., Agha-Mohammadi, S., Hawkins, R.E. & Russell, S.J. Pharmacological control of antigen responsiveness in genetically modified T lymphocytes. J. Immunol. 159, 5889–5895 (1997).

    CAS  PubMed  Google Scholar 

  35. Alvarez-Vallina, L., Yanez, R., Blanco, B., Gil, M. & Russell, S.J. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors. Cancer Gene Ther. 7, 526–529 (2000).

    Article  CAS  Google Scholar 

  36. DiDonato, J. et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell Biol. 16, 1295–1304 (1996).

    Article  CAS  Google Scholar 

  37. Sen, J. et al. Expression and induction of nuclear factor-κB-related proteins in thymocytes. J. Immunol. 154, 3213–3221 (1995).

    CAS  PubMed  Google Scholar 

  38. Trushin, S.A., Pennington, K.N., Algeciras-Schimnich, A. & Paya, C.V. Protein kinase C and calcineurin synergize to activate IκB kinase and NF-κB in T lymphocytes. J. Biol. Chem. 274, 22923–22931 (1999).

    Article  CAS  Google Scholar 

  39. Hollander, G.A. On the stochastic regulation of interleukin-2 transcription. Semin. Immunol. 11, 357–367 (1999).

    Article  CAS  Google Scholar 

  40. Jain, J., Loh, C. & Rao, A. Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7, 333–342 (1995).

    Article  CAS  Google Scholar 

  41. Cantrell, D. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol. 14, 259–274 (1996).

    Article  CAS  Google Scholar 

  42. Beg, A.A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6, 1899–1913 (1992).

    Article  CAS  Google Scholar 

  43. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  Google Scholar 

  44. McElhinny, J.A. et al. Regulation of IκB α and p105 in monocytes and macrophages persistently infected with human immunodeficiency virus. J. Virol. 69, 1500–1509 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Duisit, G., Salvetti, A., Moullier, P. & Cosset, F.L. Functional characterization of adenoviral/retroviral chimeric vectors and their use for efficient screening of retroviral producer cell lines. Hum. Gene Ther. 10, 189–200 (1999).

    Article  CAS  Google Scholar 

  46. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  47. Diaz, R.M., Eisen, T., Hart, I.R. & Vile, R.G. Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J. Virol. 72, 789–795 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Emiliusen, L. et al. A transcriptional feedback loop for tissue-specific expression of highly cytotoxic genes which incorporates an immunostimulatory component. Gene Ther. 8, 987–998 (2001).

    Article  CAS  Google Scholar 

  49. Richards, C.A., Austin, E.A. & Huber, B.E. Transcriptional regulatory sequences of carcinoembryonic antigen: identification and use with cytosine deaminase for tumor-specific gene therapy. Hum. Gene Ther. 6, 881–893 (1995).

    Article  CAS  Google Scholar 

  50. Wagner, M.J., Sharp, J.A. & Summers, W.C. Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc. Natl. Acad. Sci. USA 78, 1441–1445 (1981).

    Article  CAS  Google Scholar 

  51. Vile, R.G., Nelson, J.A., Castleden, S., Chong, H. & Hart, I.R. Systemic gene therapy of murine melanoma using tissue-specific expression of the HSVtk gene involves an immune component. Cancer Res. 54, 6228–6234 (1994).

    CAS  PubMed  Google Scholar 

  52. Freeman, S.M. et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283 (1993).

    CAS  PubMed  Google Scholar 

  53. Alvarez-Vallina, L. & Russell, S. Efficient discrimination between different densities of target antigen by tetracycline-regulatable T bodies. Hum. Gene Ther. 10, 559–563 (1999).

    Article  CAS  Google Scholar 

  54. Patel, S.D. et al. Impact of chimeric immune receptor extracellular protein domains on T cell function. Gene Ther. 6, 412–419 (1999).

    Article  CAS  Google Scholar 

  55. Miller, D.G., Adam, M.A. & Miller, A.D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10, 4239–4242 (1990).

    Article  CAS  Google Scholar 

  56. Culver, K.W. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  Google Scholar 

  57. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–266 (1996).

    Article  CAS  Google Scholar 

  58. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Toni L. Higgins for expert secretarial assistance. This work was supported by the Mayo Foundation and by the Association of Cancer Physicians of the United Kingdom (J.C). We are grateful to Dr. Carlos Paya of the Mayo Clinic for supplying the (NF-κB)3 promoter fragment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Vile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chester, J., Ruchatz, A., Gough, M. et al. Tumor antigen–specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor–modified T cells. Nat Biotechnol 20, 256–263 (2002). https://doi.org/10.1038/nbt0302-256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing