Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Principles of nanoparticle design for overcoming biological barriers to drug delivery

Subjects

Abstract

Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Framework of sequential biological barriers to nanoparticle drug delivery.
Figure 2: Strategies for nanoparticle biomimicry for MPS avoidance and prolonged circulation.
Figure 3: Nanoparticle flow, margination and adhesive properties in blood vessels are dependent on particle size and geometry.
Figure 4: Determinants of enhanced permeability of nanoparticles into tumor tissues.
Figure 5: Nanoparticle size, shape and surface charge dictate biodistribution among the different organs including the lungs, liver, spleen and kidneys.

Similar content being viewed by others

References

  1. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). A seminal work on the EPR effect in cancer that essentially laid the foundation for the use of nanotherapeutics, including liposomes and polymer-drug conjugates, as treatment modalities.

    PubMed  CAS  Google Scholar 

  4. Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Azzopardi, E.A., Ferguson, E.L. & Thomas, D.W. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 68, 257–274 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Marti, C.N. et al. Endothelial dysfunction, arterial stiffness, and heart failure. J. Am. Coll. Cardiol. 60, 1455–1469 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, L. et al. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Safra, T. et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 11, 1029–1033 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Barenholz, Y. Doxil(R)–the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  PubMed  CAS  Google Scholar 

  10. Hawkins, M.J., Soon-Shiong, P. & Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev. 60, 876–885 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. Gradishar, W.J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. O'Brien, M.E. et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15, 440–449 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Ferrari, M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol. 28, 181–188 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 7, 7442–7447 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Venditto, V.J. & Szoka, F.C. Cancer nanomedicines: so many papers and so few drugs!. Adv. Drug Deliv. Rev. 65, 80–88 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Patel, H.M. & Moghimi, S.M. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system - The concept of tissue specificity. Adv. Drug Deliv. Rev. 32, 45–60 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Nel, A.E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009). One of the most comprehensive reviews on the subject of nanoparticle protein coronas and implications on nanoparticle fate.

    Article  PubMed  CAS  Google Scholar 

  21. Sahay, G., Alakhova, D.Y. & Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release 145, 182–195 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013). Excellent study highlighting the dynamic nature of nanoparticles following protein corona formation, and the detrimental effects this has on active targeting strategies.

    Article  PubMed  CAS  Google Scholar 

  23. Docter, D. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 9, 2030–2044 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Röcker, C., Potzl, M., Zhang, F., Parak, W.J. & Nienhaus, G.U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Harris, J.M. & Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. Hamilton, A. et al. EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene glycol liposomal doxorubicin (Caelyx, Doxil) at a 6-week interval in patients with metastatic breast cancer. European Organization for Research and Treatment of Cancer. Ann. Oncol. 13, 910–918 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. Guo, S.T. & Huang, L. Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J. Nanomater. 2011, 742895 (2011).

    Google Scholar 

  28. Li, S.D. & Huang, L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim. Biophys. Acta 1788, 2259–2266 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rodriguez, P.L. et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013). An excellent study involving nanoparticle 'camouflaging' or 'biomimicry' for evasion of the MPS, highlighting consequent enhanced tumor accumulation and efficacy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8, 61–68 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Hu, C.M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 108, 10980–10985 (2011).

    Article  PubMed  Google Scholar 

  32. Kreuter, J. et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target. 10, 317–325 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Woollard, K.J. & Geissmann, F. Monocytes in atherosclerosis: subsets and functions. Nat. Rev. Cardiol. 7, 77–86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Prapainop, K., Witter, D.P. & Wentworth, P. Jr. A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J. Am. Chem. Soc. 134, 4100–4103 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. Decuzzi, P., Pasqualini, R., Arap, W. & Ferrari, M. Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26, 235–243 (2009).

    Article  PubMed  CAS  Google Scholar 

  37. Arvizo, R.R. et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS ONE 6, e24374 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yao, C. et al. Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. Anal. Chem. 86, 9749–9757 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Decuzzi, P., Lee, S., Bhushan, B. & Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–190 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Tan, J., Shah, S., Thomas, A., Ou-Yang, H.D. & Liu, Y. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid. Nanofluidics 14, 77–87 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Shah, S., Liu, Y., Hu, W. & Gao, J. Modeling particle shape-dependent dynamics in nanomedicine. J. Nanosci. Nanotechnol. 11, 919–928 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Alexiou, C. et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000).

    PubMed  CAS  Google Scholar 

  43. Gentile, F. et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J. Biomech. 41, 2312–2318 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151–157 (2008).

    Article  PubMed  CAS  Google Scholar 

  45. Chiappini, C. et al. Tailored porous silicon microparticles: fabrication and properties. ChemPhysChem 11, 1029–1035 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. van de Ven, A.L. et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J. Control. Release 158, 148–155 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. Tanaka, T. et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70, 3687–3696 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508, 103–107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Dave, B. et al. Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proc. Natl. Acad. Sci. USA 111, 8838–8843 (2014).

    Article  PubMed  CAS  Google Scholar 

  50. von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011). An inventive approach for targeting of nanoparticles involving 'biological communication' between different injectable constructs for enhanced uptake into tumors.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Murphy, E.A. et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA 105, 9343–9348 (2008).

    Article  PubMed  Google Scholar 

  52. Thurston, G. et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 101, 1401–1413 (1998). An interesting study demonstrating the potential of using surface charge of nanoparticles, in this case cationic liposomes, as a means to target therapeutics to angiogenic tumor vasculature by means of enhanced endothelial cell uptake.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yokoi, K. et al. Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett. 345, 48–55 (2014).

    Article  PubMed  CAS  Google Scholar 

  54. Yokoi, K. et al. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res. 74, 4239–4246 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Heldin, C.H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. Chauhan, V.P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jain, R.K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Jain, R.K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Monsky, W.L. et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59, 4129–4135 (1999).

    PubMed  CAS  Google Scholar 

  60. Diop-Frimpong, B., Chauhan, V.P., Krane, S., Boucher, Y. & Jain, R.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 108, 2909–2914 (2011).

    Article  PubMed  Google Scholar 

  61. Miller, C.R., Bondurant, B., McLean, S.D., McGovern, K.A. & O'Brien, D.F. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37, 12875–12883 (1998).

    Article  PubMed  CAS  Google Scholar 

  62. Gratton, S.E. et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 105, 11613–11618 (2008).

    Article  PubMed  Google Scholar 

  63. Osaka, T., Nakanishi, T., Shanmugam, S., Takahama, S. & Zhang, H. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf. B Biointerfaces 71, 325–330 (2009).

    Article  PubMed  CAS  Google Scholar 

  64. Serda, R.E. et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials 30, 2440–2448 (2009).

    Article  PubMed  CAS  Google Scholar 

  65. Lee, Y. et al. A protein nanocarrier from charge-conversion polymer in response to endosomal pH. J. Am. Chem. Soc. 129, 5362–5363 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. Yuan, Y.Y. et al. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 24, 5476–5480 (2012). A highly innovative approach towards site-specific, externally stimulated nanoparticle surface charge conversion that permits for prolonged circulation and heightened tumor cell internalization: a perfect example of design considerations that take into account different barriers to nanoparticle drug delivery.

    Article  PubMed  CAS  Google Scholar 

  67. Le Roy, C. & Wrana, J.L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 6, 112–126 (2005).

    Article  PubMed  CAS  Google Scholar 

  68. Gould, G.W. & Lippincott-Schwartz, J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat. Rev. Mol. Cell Biol. 10, 287–292 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Luo, D. & Saltzman, W.M. Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37 (2000).

    Article  PubMed  CAS  Google Scholar 

  70. Bareford, L.M. & Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 59, 748–758 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Martens, T.F., Remaut, K., Demeester, J., De Smedt, S.C. & Braeckmans, K. Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today 9, 344–364 (2014).

    Article  CAS  Google Scholar 

  72. Wasungu, L. & Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release 116, 255–264 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. Chou, L.Y., Ming, K. & Chan, W.C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    Article  PubMed  CAS  Google Scholar 

  74. Dauty, E., Remy, J.S., Zuber, G. & Behr, J.P. Intracellular delivery of nanometric DNA particles via the folate receptor. Bioconjug. Chem. 13, 831–839 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Gradishar, W.J. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin. Pharmacother. 7, 1041–1053 (2006).

    Article  PubMed  CAS  Google Scholar 

  76. Ibrahim, N.K. et al. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 23, 6019–6026 (2005). Clinical trial of nanoparticle albumin-bound paclitaxel in metastatic breast cancer patients, highlighting not only the therapeutic potential of paclitaxel, but its benefits with regards to reduced side effects compared to the conventional formulation containing Cremophor EL.

    Article  PubMed  CAS  Google Scholar 

  77. Szakács, G., Paterson, J.K., Ludwig, J.A., Booth-Genthe, C. & Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5, 219–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  78. Rees, D.C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Aller, S.G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Gottesman, M.M., Fojo, T. & Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Fletcher, J.I., Haber, M., Henderson, M.J. & Norris, M.D. ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer 10, 147–156 (2010).

    Article  PubMed  CAS  Google Scholar 

  82. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Wu, J. et al. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J. Pharm. Pharm. Sci. 10, 350–357 (2007).

    PubMed  CAS  Google Scholar 

  84. Wong, H.L., Bendayan, R., Rauth, A.M. & Wu, X.Y. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J. Control. Release 116, 275–284 (2006).

    Article  PubMed  CAS  Google Scholar 

  85. Patel, N.R., Rathi, A., Mongayt, D. & Torchilin, V.P. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm. 416, 296–299 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Xiong, X.B. & Lavasanifar, A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano 5, 5202–5213 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Batrakova, E.V. & Kabanov, A.V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sosnik, A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing “Generally Recognized As Safe” (GRAS) nanopharmaceuticals: A review. Adv. Drug Deliv. Rev. 65, 1828–1851 (2013).

    Article  PubMed  CAS  Google Scholar 

  89. Lee, Y., Park, S.Y., Mok, H. & Park, T.G. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjug. Chem. 19, 525–531 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. Tian, Y., Bromberg, L., Lin, S.N., Hatton, T.A. & Tam, K.C. Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers. J. Control. Release 121, 137–145 (2007).

    Article  PubMed  CAS  Google Scholar 

  91. Longmire, M., Choyke, P.L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.) 3, 703–717 (2008).

    Article  CAS  Google Scholar 

  92. Black, K.C. et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8, 4385–4394 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Xiao, K. et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Sheridan, C. Gene therapy finds its niche. Nat. Biotechnol. 29, 121–128 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Kay, M.A., Glorioso, J.C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40 (2001).

    Article  PubMed  CAS  Google Scholar 

  96. Levine, R.M., Pearce, T.R., Adil, M. & Kokkoli, E. Preparation and characterization of liposome-encapsulated plasmid DNA for gene delivery. Langmuir 29, 9208–9215 (2013).

    Article  PubMed  CAS  Google Scholar 

  97. Dobson, J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287 (2006).

    Article  PubMed  CAS  Google Scholar 

  98. Pissuwan, D., Niidome, T. & Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011).

    Article  PubMed  CAS  Google Scholar 

  99. Lechardeur, D. et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497 (1999).

    Article  PubMed  CAS  Google Scholar 

  100. Anderson, D.J. & Hetzer, M.W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell Biol. 9, 1160–1166 (2007).

    Article  PubMed  CAS  Google Scholar 

  101. Raices, M. & D'Angelo, M.A. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat. Rev. Mol. Cell Biol. 13, 687–699 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Hu, Y., Haynes, M.T., Wang, Y., Liu, F. & Huang, L. A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano 7, 5376–5384 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Choi, H.S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Braet, F. et al. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc. Res. Tech. 70, 230–242 (2007).

    Article  PubMed  Google Scholar 

  105. Chen, L.T. & Weiss, L. The role of the sinus wall in the passage of erythrocytes through the spleen. Blood 41, 529–537 (1973).

    Article  PubMed  CAS  Google Scholar 

  106. Hobbs, S.K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95, 4607–4612 (1998).

    Article  PubMed  CAS  Google Scholar 

  107. Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011). Excellent study that highlights the effect of nanoparticle size on accumulation and penetration of nanoparticles in hypovascular tumors.

    Article  PubMed  CAS  Google Scholar 

  108. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  109. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Champion, J.A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103, 4930–4934 (2006). Seminal work on the effect of particle geometry on macrophage uptake, demonstrating that the architectural design parameter of curvature drives phagocytosis.

    Article  PubMed  CAS  Google Scholar 

  111. Champion, J.A. & Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 26, 244–249 (2009).

    Article  PubMed  CAS  Google Scholar 

  112. Christian, D.A. et al. Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol. Pharm. 6, 1343–1352 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Park, J.H. et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5, 694–700 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Alexis, F., Pridgen, E., Molnar, L.K. & Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yamamoto, Y., Nagasaki, Y., Kato, Y., Sugiyama, Y. & Kataoka, K. Long-circulating poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles with modulated surface charge. J. Control. Release 77, 27–38 (2001).

    Article  PubMed  CAS  Google Scholar 

  116. Moghimi, S.M., Hunter, A.C. & Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    PubMed  CAS  Google Scholar 

  117. Zhang, L. et al. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 6, 6681–6686 (2012).

    Article  PubMed  CAS  Google Scholar 

  118. Merkel, T.J. et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Release 162, 37–44 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Cui, J. et al. Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater. 26, 7295–7299 (2014).

    Article  PubMed  CAS  Google Scholar 

  120. Attia, A.B.E. et al. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials 34, 3132–3140 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. van Nostrum, C.F. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 7, 3246–3259 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.F. is grateful for the Ernest Cockrell Jr. Distinguished Endowed Chair in the Department of Nanomedicine at the Houston Methodist Research Institute. The authors acknowledge financial support from Department of Defense grant W81XWH-12-1-0414, and US National Institutes of Health grants NIH U54CA143837 and NIH U54CA151668. E.B. is grateful for the support of the Susan G. Komen Breast Cancer Foundation (grant KG101394). The authors are grateful for the assistance of F.E. Cara, V. Segura-Ibarra and Suhong Wu in manuscript preparation. M.G. Landry is acknowledged for manuscript schematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33, 941–951 (2015). https://doi.org/10.1038/nbt.3330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3330

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research