Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance

Abstract

Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are grown widely for pest control1, but insect adaptation can reduce their efficacy2,3,4,5,6. The genetically modified Bt toxins Cry1AbMod and Cry1AcMod were designed to counter insect resistance to native Bt toxins Cry1Ab and Cry1Ac7. Previous results suggested that the modified toxins would be effective only if resistance was linked with mutations in genes encoding toxin-binding cadherin proteins7. Here we report evidence from five major crop pests refuting this hypothesis. Relative to native toxins, the potency of modified toxins was >350-fold higher against resistant strains of Plutella xylostella and Ostrinia nubilalis in which resistance was not linked with cadherin mutations. Conversely, the modified toxins provided little or no advantage against some resistant strains of three other pests with altered cadherin. Independent of the presence of cadherin mutations, the relative potency of the modified toxins was generally higher against the most resistant strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of susceptible and resistant strains of P. xylostella to native and genetically modified Bt toxins.
Figure 2: Resistance to native Bt toxins Cry1Ab and Cry1Ac (light bars) and genetically modified Bt toxins Cry1AbMod and Cry1AcMod (dark bars) in six species of insect pests.
Figure 3: Potency of modified Bt toxins relative to native Bt toxins.

Similar content being viewed by others

References

  1. James, C. Global status of commercialized biotech/GM crops: 2010. ISAAA Briefs 42 (ISAAA, Ithaca, NY, 2011).

  2. Kruger, M.J., Van Rensburg, J.B.J. & Van den Berg, J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot. 28, 684–689 (2009).

    Article  Google Scholar 

  3. Tabashnik, B.E., Van Rensburg, J.B.J. & Carrière, Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J. Econ. Entomol. 102, 2011–2025 (2009).

    Article  CAS  Google Scholar 

  4. Storer, N.P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).

    Article  Google Scholar 

  5. Dhurua, S. & Gujar, G.T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. (2011).

  6. Sanahuja, G., Banakar, R., Twyman, R., Capell, T. & Christou, P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300 (2011).

    Article  CAS  Google Scholar 

  7. Soberón, M. et al. Engineering modified Bt toxins to counter insect resistance. Science 318, 1640–1642 (2007).

    Article  Google Scholar 

  8. Mendelsohn, M., Kough, J., Vaituzis, Z. & Matthews, K. Are Bt crops safe? Nat. Biotechnol. 21, 1003–1009 (2003).

    Article  CAS  Google Scholar 

  9. Ferré, J. & Van Rie, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47, 501–533 (2002).

    Article  Google Scholar 

  10. Franklin, M.T. et al. Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni. Appl. Environ. Microbiol. 75, 5739–5741 (2009).

    Article  CAS  Google Scholar 

  11. Carrière, Y., Crowder, D.W. & Tabashnik, B.E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).

    Article  Google Scholar 

  12. Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R.S. & Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).

    Article  CAS  Google Scholar 

  13. Zhang, H. et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 6, e22874 (2011).

    Article  CAS  Google Scholar 

  14. Jurat-Fuentes, J.L. et al. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS ONE 6, e17606 (2011).

    Article  CAS  Google Scholar 

  15. Bravo, A., Likitvivatanavong, S., Gill, S. & Soberón, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423–431 (2011).

    Article  CAS  Google Scholar 

  16. Gahan, L.J., Gould, F. & Heckel, D.G. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293, 857–860 (2001).

    Article  CAS  Google Scholar 

  17. Morin, S. et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. USA 100, 5004–5009 (2003).

    Article  CAS  Google Scholar 

  18. Yang, Y.-H. et al. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. Bull. Entomol. Res. 99, 175–181 (2009).

    Article  CAS  Google Scholar 

  19. Baxter, S.W., Zhao, J.-Z., Shelton, A.M., Vogel, H. & Heckel, D.G. Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella. Insect Biochem. Mol. Biol. 38, 125–135 (2008).

    Article  CAS  Google Scholar 

  20. Hernández-Martínez, P. et al. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS ONE 5, e12795 (2010).

    Article  Google Scholar 

  21. Pacheco, S. et al. Domain II Loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J. Biol. Chem. 284, 32,750–32,757 (2009).

    Article  CAS  Google Scholar 

  22. Muñóz-Garay, C. et al. Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochim. Biophys. Acta 1788, 2229–2237 (2009).

    Article  Google Scholar 

  23. Tabashnik, B.E. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 58, 3343–3346 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gahan, L.J., Pauchet, Y., Vogel, H. & Heckel, D.G. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 6, e1001248 (2010).

    Article  CAS  Google Scholar 

  25. Baxter, S.W. et al. Parallel evolution of Bt toxin resistance in Lepidoptera. Genetics, published online, doi:10.1534/genetics.111.130971 (11 August 2011).

  26. Crespo, A.L.B. et al. Cross-resistance and mechanism of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. J. Invertebr. Pathol. 107, 185–192 (2011).

    Article  CAS  Google Scholar 

  27. Khajuria, C., Buschman, L.L., Chen, M.-S., Siegfried, B.D. & Zhu, K.Y. Identification of a novel aminopeptidase P-like Gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS ONE 6, e23983 (2011).

    Article  CAS  Google Scholar 

  28. Yang, Y. et al. Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer, Diatraea saccharalis. Insect Biochem. Mol. Biol. 40, 592–603 (2010).

    Article  CAS  Google Scholar 

  29. Yang, Y. Molecular Mechanisms of Bacillus thuringiensis Resistance in the Sugarcane Borer. PhD thesis, Louisiana State Univ. (2011).

  30. Tiewsiri, K. & Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc. Natl. Acad. Sci. USA 108, 14037–14042 (2011).

    Article  CAS  Google Scholar 

  31. Moar, W.J. & Anilkumar, K.J. The power of the pyramid. Science 318, 1561–1562 (2007).

    Article  CAS  Google Scholar 

  32. Tabashnik, B.E. et al. Suppressing resistance to Bt cotton with sterile insect releases. Nat. Biotechnol. 28, 1304–1307 (2010).

    Article  CAS  Google Scholar 

  33. Jackson, R.E., Marcus, M.A., Gould, F., Bradley, J.R. Jr. & Duyn, J.W. Cross-resistance responses of Cry1Ac-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein Vip3A. J. Econ. Entomol. 100, 180–186 (2007).

    Article  CAS  Google Scholar 

  34. Tabashnik, B.E., Cushing, N.L., Finson, N. & Johnson, M.W. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83, 1671–1676 (1990).

    Article  Google Scholar 

  35. Tabashnik, B.E., Johnson, K.W., Engleman, J.T. & Baum, J.A. Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet. J. Invertebr. Pathol. 76, 81–83 (2000).

    Article  CAS  Google Scholar 

  36. Shelton, A.M. et al. Resistance of diamondback moth to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86, 697–705 (1993).

    Article  Google Scholar 

  37. Baxter, S.W. et al. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella. Insect Mol. Biol. 14, 327–334 (2005).

    Article  CAS  Google Scholar 

  38. Tabashnik, B.E., Liu, Y.B., Finson, N., Masson, L. & Heckel, D.G. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Natl. Acad. Sci. USA 94, 1640–1644 (1997).

    Article  CAS  Google Scholar 

  39. Siegfried, B.D. et al. Ten years of Bt resistance monitoring in the European corn borer: what we know, what we don't know, and what we can do better. Amer. Entomol. 53, 208–214 (2007).

    Article  Google Scholar 

  40. Crespo, A.L.B. et al. On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest Manag. Sci. 65, 1071–1081 (2009).

    Article  CAS  Google Scholar 

  41. Crespo, A.L.B., Spencer, T., Tan, S.Y. & Siegfried, B.D. Fitness costs of Cry1Ab resistance in a field-derived strain of Ostrinia nubilalis (Lepidoptera: Crambidae). J. Econ. Entomol. 103, 1386–1393 (2010).

    Article  Google Scholar 

  42. Chaufaux, J., Seguin, M., Swanson, J.J., Bourguet, D. & Siegfried, B.D. Chronic exposure of the European corn borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis toxin. J. Econ. Entomol. 94, 1564–1570 (2001).

    Article  CAS  Google Scholar 

  43. Alves, A.P., Spencer, T.A., Tabashnik, B.E. & Siegfried, B.D. Inheritance of resistance to the Cry1Ab Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae). J. Econ. Entomol. 99, 494–501 (2006).

    Article  CAS  Google Scholar 

  44. Huang, F., Leonard, B.R. & Andow, D. Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J. Econ. Entomol. 100, 164–171 (2007).

    Article  Google Scholar 

  45. Xu, X., Yu, L. & Wu, Y. Disruption of a cadherin gene associated with resistance to Cry1Ac ∂-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbiol. 71, 948–954 (2005).

    Article  CAS  Google Scholar 

  46. Gould, F., Anderson, A., Reynolds, A., Bumgarner, L. & Moar, W. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88, 1545–1559 (1995).

    Article  CAS  Google Scholar 

  47. Tabashnik, B.E. et al. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc. Natl. Acad. Sci. USA 97, 12,980–12,984 (2000).

    Article  CAS  Google Scholar 

  48. Marçon, P.C.R.G., Young, L.J., Steffey, K.L. & Siegfried, B.D. Baseline susceptibility of European corn borer (Lepidoptera: Crambidae) to Bacillus thuringiensis toxins. J. Econ. Entomol. 92, 279–285 (1999).

    Article  Google Scholar 

  49. Huang, F., Leonard, B.R. & Wu, X. Resistance of sugarcane borer to Bacillus thuringiensis Cry1Ab toxin. Entomol. Exp. Appl. 124, 117–123 (2007).

    Article  CAS  Google Scholar 

  50. Gahan, L.J. et al. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 98, 1357–1368 (2005).

    Article  CAS  Google Scholar 

  51. SAS Institute. SAS/STAT User Guide, Version 9.1 (SAS Institute, Cary, NC, USA, 2009).

  52. LeOra Software. POLO-PC: A User's Guide to Probit and Logit Analysis (Berkeley, CA, USA, 1987).

  53. LeOra Software. PoloPlus: A User's Guide to Probit and Logit Analysis (Berkeley, CA, USA, 2003).

  54. Tabashnik, B.E., Cushing, N.L. & Johnson, M.W. Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: Intra-island variation and cross-resistance. J. Econ. Entomol. 80, 1091–1099 (1987).

    Article  CAS  Google Scholar 

  55. Wolfersberger, M. et al. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86, 301–308 (1987).

    Article  Google Scholar 

  56. Xie, R. et al. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J. Biol. Chem. 280, 8416–8425 (2005).

    Article  CAS  Google Scholar 

  57. Fabrick, J.A. & Tabashnik, B.E. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Insect Biochem. Mol. Biol. 37, 97–106 (2007).

    Article  CAS  Google Scholar 

  58. Jiménez-Juárez, N. et al. Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J. Biol. Chem. 282, 21,222–21,229 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Benzon, J. Engleman, J. Sánchez, T. Spencer and A. Yelich for technical assistance and J. Fabrick for providing an antibody. This work was supported by US Department of Agriculture, Agriculture and Food Research Initiative Grant 2008-35302-0390, US National Science Foundation Grant 0517107, Max-Planck-Gesellschaft, Pioneer Hi-Bred and the National Natural Science Foundation of China Grant 30870343.

Author information

Authors and Affiliations

Authors

Contributions

B.E.T., L.J.G., D.G.H., B.D.S., F.H., B.R.L., Y.W., M.S. and A.B. contributed to research design; M.S. and A.B. provided the toxins; L.J.G., M.R., M.N.G. and Y.Y. conducted bioassays; B.E.T., B.D.S., F.H. and Y.W. analyzed data. B.E.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bruce E Tabashnik.

Ethics declarations

Competing interests

Pioneer Hi-Bred International, which may be affected financially by publication of this article, provided partial funding for the research. Dow AgroSciences, Monsanto and Syngenta did not provide funding to support this work, but may be affected financially by publication of this paper and have supported other research by some of the authors. While conducting work for this paper, M.R. was a postdoctoral research associate at the University of Nebraska. He is now employed by Dow AgroSciences. A.B., M.S. and B.E.T. are coauthors of a patent application on engineering modified Bt toxins to counter pest resistance, which is related to research described by M.S. et al. (Science 318,1640–1642, 2007).

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figures 1,2 (PDF 322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabashnik, B., Huang, F., Ghimire, M. et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat Biotechnol 29, 1128–1131 (2011). https://doi.org/10.1038/nbt.1988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing