Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of human embryonic stem cells with features of neoplastic progression

Abstract

Cultured human embryonic stem (hES) cells can acquire genetic and epigenetic changes that make them vulnerable to transformation. As hES cells with cancer-cell characteristics share properties with normal hES cells, such as self-renewal, teratoma formation and the expression of pluripotency markers, they may be misconstrued as superior hES cells with enhanced 'stemness'. We characterize two variant hES cell lines (v-hESC-1 and v-hESC-2) that express pluripotency markers at high levels and do not harbor chromosomal abnormalities by standard cytogenetic measures. We show that the two lines possess some features of neoplastic progression, including a high proliferative capacity, growth-factor independence, a 9- to 20-fold increase in frequency of tumor-initiating cells, niche independence and aberrant lineage specification, although they are not malignant. Array comparative genomic hybridization reveals an amplification at 20q11.1-11.2 in v-hESC-1 and a deletion at 5q34a-5q34b;5q3 and a mosaic gain of chromosome 12 in v-hESC-2. These results emphasize the need for functional characterization to distinguish partially transformed and normal hES cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variant hES cells are morphologically and phenotypically different from normal hES cells.
Figure 2: Variant hES cells exhibit dysregulated cell-cycle and self-renewal properties in vitro and tumor-initiating cell frequency in vivo.
Figure 3: v-hESC-1 cells have acquired FGFR1 and IGF1R expression on all pluripotent cells within the culture and are refractory to differentiation in vitro.
Figure 4: Neural progeny of variant hES cells retain molecular and functional abnormalities of their parent cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Baker, D.E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Caisander, G. et al. Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture. Chromosome Res. 14, 131–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Inzunza, J. et al. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol. Hum. Reprod. 10, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Rosler, E.S. et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Imreh, M.P. et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J. Cell. Biochem. 99, 508–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Brimble, S.N. et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 13, 585–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Maitra, A. et al. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37, 1099–1103 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Enver, T. et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum. Mol. Genet. 14, 3129–3140 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Herszfeld, D. et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat. Biotechnol. 24, 351–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Mitalipova, M.M. et al. Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23, 19–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ludwig, T.E. et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24, 185–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, S. et al. Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes Chromosom. Cancer 47, 665–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lodish, H. et al. Molecular Cell Biology edn. 3 (W.H. Freeman & Co., New York, 1995).

    Google Scholar 

  17. Stewart, M.H. et al. Clonal isolation of hES cells reveals heterogeneity within the pluripotent stem cell compartment. Nat. Methods 3, 807–815 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bendall, S.C. et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, 1015–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Hook, E.B. Exclusion of chromosomal mosaicism: tables of 90%, 95%, and 99% confidence limits and comments on use. Am. J. Hum. Genet. 29, 94–97 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Levenstein, M. et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574 (2004).

    Article  Google Scholar 

  21. Lensch, M.W. & Ince, T.A. The terminology of teratocarcinomas and teratomas. Nat. Biotechnol. 25, 1211 author reply, 1211–1212 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Damjanov, I. & Andrews, P.W. The terminology of teratocarcinomas and teratomas. Nat. Biotechnol. 25, 1212 editorial reply, 1212 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boyer, L.A. et al. Polycomb complexes repress developmental regulator in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Spits, C. et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat. Biotechnol. 26, 1361–1363 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Lefort, N. et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat. Biotechnol. 26, 1364–1366 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. O'Brien, C.A., Pollett, A., Gallinger, S. & Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Shmelkov, S.V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Postovit, L.M. et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc. Natl. Acad. Sci. USA 105, 4329–4334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chadwick, K. et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Canadian Institute of Health Research, the National Cancer Institute of Canada (NCIC), Ontario Institute of Cancer Research (OICR) and the Canadian Cancer Society (CCS). A fellowship from the NCIC supports T.E.W.-O. and support to M.B. from the Canada Research Chair Program. In addition, thanks to Jiabi Yang for technical support in scoring teratoma formation assays and members of the Stem Cell and Cancer Research Institute for helpful insights during the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.E.W.-O. performed and designed experiments, analyzed data and assisted in writing the manuscript. M.B., M.S., V.R.-M., A.R., T.W., S.D., T.C., C.W. (from PerkinElmer) and C.H. performed experiments. A.S. analyzed bioinformatics data, and M.-J.S. conducted histological analysis. J.D., C.W. (from McMaster) and D.B. were collaborators on the paper. M.B. designed experiments, interpreted and assisted in writing the manuscript.

Corresponding author

Correspondence to Mickie Bhatia.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-6, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werbowetski-Ogilvie, T., Bossé, M., Stewart, M. et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27, 91–97 (2009). https://doi.org/10.1038/nbt.1516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing