Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The initiation of mammalian protein synthesis and mRNA scanning mechanism

Abstract

During translation initiation in eukaryotes, the small ribosomal subunit binds messenger RNA at the 5′ end and scans in the 5′ to 3′ direction to locate the initiation codon, form the 80S initiation complex and start protein synthesis. This simple, yet intricate, process is guided by multiple initiation factors. Here we determine the structures of three complexes of the small ribosomal subunit that represent distinct steps in mammalian translation initiation. These structures reveal the locations of eIF1, eIF1A, mRNA and initiator transfer RNA bound to the small ribosomal subunit and provide insights into the details of translation initiation specific to eukaryotes. Conformational changes associated with the captured functional states reveal the dynamics of the interactions in the P site of the ribosome. These results have functional implications for the mechanism of mRNA scanning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of rabbit pre-initiation complexes.
Figure 2: Interactions of tRNAi and eIF1A with the 40S subunit.
Figure 3: Path of the mRNA in the 48S PIC.
Figure 4: The latch and initiation factor eIF1.
Figure 5: Scanning model.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

The structural coordinates of PIC1, PIC2 and 48S PIC have been deposited in the Protein Data Bank (http://www.rcsb.org/pdb) under accession codes 4KZX, 4KZY and 4KZZ, respectively.

References

  1. Myasnikov, A. G., Simonetti, A., Marzi, S. & Klaholz, B. P. Structure-function insights into prokaryotic and eukaryotic translation initiation. Curr. Opin. Struct. Biol. 19, 300–309 (2009)

    Article  CAS  Google Scholar 

  2. Hinnebusch, A. G. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol. Mol. Biol. Rev. 75, 434–467 (2011)

    Article  CAS  Google Scholar 

  3. Aitken, C. E. & Lorsch, J. R. A mechaistic overview of translation initiation in eukaryotes. Nature Struct. Mol. Biol. 19, 568–576 (2012)

    Article  CAS  Google Scholar 

  4. Voigts-Hoffmann, F., Klinge, S. & Ban, N. Structural insights into eukaryotic ribosomes and the initiation of translation. Curr. Opin. Struct. Biol. 22, 768–777 (2012)

    Article  CAS  Google Scholar 

  5. Lorsch, J. R. & Dever, T. E. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J. Biol. Chem. 285, 21203–21207 (2010)

    Article  CAS  Google Scholar 

  6. Kozak, M. How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15, 1109–1123 (1978)

    Article  CAS  Google Scholar 

  7. Cavener, D. R. & Ray, S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res. 19, 3185–3192 (1991)

    Article  CAS  Google Scholar 

  8. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987)

    Article  CAS  Google Scholar 

  9. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127 (2010)

    Article  CAS  Google Scholar 

  10. Algire, M. A., Maag, D. & Lorsch, J. R. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell 20, 251–262 (2005)

    Article  CAS  Google Scholar 

  11. Maag, D., Fekete, C. A., Gryczynski, Z. & Lorsch, J. R. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol. Cell 17, 265–275 (2005)

    Article  CAS  Google Scholar 

  12. Noller, H. F., Hoang, L. & Fredrick, K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett. 579, 855–858 (2005)

    Article  CAS  Google Scholar 

  13. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Pisarev, A. V. et al. Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev. 20, 624–636 (2006)

    Article  CAS  Google Scholar 

  15. Fekete, C. A. et al. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J. 26, 1602–1614 (2007)

    Article  CAS  Google Scholar 

  16. Yu, Y. et al. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. 37, 5167–5182 (2009)

    Article  CAS  Google Scholar 

  17. Saini, A. K., Nanda, J. S., Lorsch, J. R. & Hinnebusch, A. G. Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNA(i)(Met) binding to the ribosome. Genes Dev. 24, 97–110 (2010)

    Article  CAS  Google Scholar 

  18. Julián, P. et al. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol. 9, e1001095 (2011)

    Article  Google Scholar 

  19. Simonetti, A. et al. Structure of the 30S translation initiation complex. Nature 455, 416–420 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Dong, J. et al. Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNA(Met) and AUG selection. Genes Dev. 22, 2242–2255 (2008)

    Article  CAS  Google Scholar 

  21. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Pisarev, A. V., Kolupaeva, V. G., Yusupov, M. M., Hellen, C. U. & Pestova, T. V. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J. 27, 1609–1621 (2008)

    Article  CAS  Google Scholar 

  23. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986)

    Article  CAS  Google Scholar 

  24. Wegrzyn, J. L., Drudge, T. M., Valafar, F. & Hook, V. Bioinformatic analyses of mammalian 5′-UTR sequence properties of mRNAs predicts alternative translation initiation sites. BMC Bioinformatics 9, 232 (2008)

    Article  Google Scholar 

  25. Carter, A. P. et al. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498–501 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Battiste, J. L., Pestova, T. V., Hellen, C. U. & Wagner, G. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5, 109–119 (2000)

    Article  CAS  Google Scholar 

  27. Fekete, C. A. et al. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J. 24, 3588–3601 (2005)

    Article  CAS  Google Scholar 

  28. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Passmore, L. A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26, 41–50 (2007)

    Article  CAS  Google Scholar 

  30. Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102, 615–623 (2000)

    Article  CAS  Google Scholar 

  31. Lomakin, I. B., Kolupaeva, V. G., Marintchev, A., Wagner, G. & Pestova, T. V. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. 17, 2786–2797 (2003)

    Article  CAS  Google Scholar 

  32. Lomakin, I. B., Shirokikh, N. E., Yusupov, M. M., Hellen, C. U. & Pestova, T. V. The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J. 25, 196–210 (2006)

    Article  CAS  Google Scholar 

  33. Pestova, T. V., Borukhov, S. I. & Hellen, C. U. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854–859 (1998)

    Article  ADS  CAS  Google Scholar 

  34. Pestova, T. V. & Kolupaeva, V. G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002)

    Article  CAS  Google Scholar 

  35. Rabl, J., Leibundgut, M., Ataide, S. F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011)

    Article  ADS  CAS  Google Scholar 

  36. Fletcher, C. M., Pestova, T. V., Hellen, C. U. & Wagner, G. Structure and interactions of the translation initiation factor eIF1. EMBO J. 18, 2631–2637 (1999)

    Article  CAS  Google Scholar 

  37. Kolitz, S. E., Takacs, J. E. & Lorsch, J. R. Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA 15, 138–152 (2009)

    Article  CAS  Google Scholar 

  38. Maag, D. & Lorsch, J. R. Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J. Mol. Biol. 330, 917–924 (2003)

    Article  CAS  Google Scholar 

  39. Anger, A. M. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013)

    Article  ADS  CAS  Google Scholar 

  40. Pestova, T. V., Hellen, C. U. & Shatsky, I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16, 6859–6869 (1996)

    Article  CAS  Google Scholar 

  41. Pestova, T. V. & Hellen, C. U. Preparation and activity of synthetic unmodified mammalian tRNAi(Met) in initiation of translation in vitro. RNA 7, 1496–1505 (2001)

    Article  CAS  Google Scholar 

  42. Acker, M. G., Kolitz, S. E., Mitchell, S. F., Nanda, J. S. & Lorsch, J. R. Reconstitution of yeast translation initiation. Methods Enzymol. 430, 111–145 (2007)

    Article  CAS  Google Scholar 

  43. Pestova, T. V., Lomakin, I. B. & Hellen, C. U. Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep. 5, 906–913 (2004)

    Article  CAS  Google Scholar 

  44. Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  Google Scholar 

  45. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    Article  CAS  Google Scholar 

  46. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  47. Rees, B., Jenner, L. & Yusupov, M. Bulk-solvent correction in large macromolecular structures. Acta Crystallogr. D 61, 1299–1301 (2005)

    Article  Google Scholar 

  48. Vila-Sanjurjo, A. et al. X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli. Proc. Natl Acad. Sci. USA 100, 8682–8687 (2003)

    Article  ADS  CAS  Google Scholar 

  49. Lancaster, L. et al. The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography. RNA 6, 717–729 (2000)

    Article  CAS  Google Scholar 

  50. Vila-Sanjurjo, A., Schuwirth, B. S., Hau, C. W. & Cate, J. H. Structural basis for the control of translation initiation during stress. Nature Struct. Mol. Biol. 11, 1054–1059 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Steitz laboratory for useful suggestions and discussions, the staff of the Advanced Photon Source beamline 24-ID, the National Synchrotron Light Source beamlines X25 and X29, and the Richards Center facility at Yale University for support. We also thank Y. Polikanov, J. Wang and Y. Xiong for advice with crystallographic software. This work was supported by the National Institutes of Health (NIH) grant GM022778 (to T.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

I.B.L. designed and performed experiments, analysed data and wrote the paper; T.A.S. analysed data, wrote the paper and directed research.

Corresponding authors

Correspondence to Ivan B. Lomakin or Thomas A. Steitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3. Supplementary Notes, Supplementary Figures 1-8 and Supplementary references. (PDF 1392 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomakin, I., Steitz, T. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500, 307–311 (2013). https://doi.org/10.1038/nature12355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12355

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing