Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Approaching a state shift in Earth’s biosphere

Abstract

Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence. The plausibility of a planetary-scale ‘tipping point’ highlights the need to improve biological forecasting by detecting early warning signs of critical transitions on global as well as local scales, and by detecting feedbacks that promote such transitions. It is also necessary to address root causes of how humans are forcing biological changes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drivers of a potential planetary-scale critical transition.
Figure 2: Quantifying land use as one method of anticipating a planetary state shift.

References

  1. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997)

    Article  CAS  Google Scholar 

  2. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steffen, W. et al. The Anthropocene: from global change to planetary stewardship. AMBIO 40, 739–761 (2011)This paper summarizes the many ways in which humans are changing the planet, argues that the combined effect is as strong as geological forces and points to the likelihood of planetary tipping points.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Convention on Biological Diversity. Strategic Plan for Biodiversity 2011–2020, http://www.cbd.int/sp/ (2011)

  5. Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Serviceswww.ipbes.net (2011)

  8. Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010)

    Article  Google Scholar 

  9. Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramakrishnan, U. & Hadly, E. A. Using phylochronology to reveal cryptic population histories: review and synthesis of four ancient DNA studies. Mol. Ecol. 18, 1310–1330 (2009)

    Article  PubMed  Google Scholar 

  11. Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010)

    Article  PubMed  Google Scholar 

  12. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009)This paper presents a general approach to the detection of critical transitions and outlines the possibility of there being general indicators.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Folke, C. et al. Reconnecting to the biosphere. AMBIO 40, 719–738 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009)This paper specifies important planetary boundaries and explains why exceeding them would be detrimental to humanity.

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Westley, F. et al. Tipping toward sustainability: emerging pathways of transformation. AMBIO 40, 762–780 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lenton, T. M. Early warning of climate tipping points. Nature Clim. Change 1, 201–209 (2011)

    Article  ADS  Google Scholar 

  19. Galaz, V. et al. ‘Planetary boundaries’ — exploring the challenges for global environmental governance. Curr. Opin. Environ. Sustain. 4, 80–87 (2012)

    Article  Google Scholar 

  20. Hastings, A. & Wysham, D. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010)This paper points out that regime shifts in complex systems need not result from saddle-node bifurcations and thus may not show the typical early warning signals.

    Article  PubMed  Google Scholar 

  21. Peters, D. P. C. et al. in Real World Ecology (eds Miao, S. L., Carstenn, S. & Nungesser, M. K. ) 47–71 (Springer, 2009)

  22. Getz, W. M. Disease and the dynamics of foodwebs. PLoS Biol. 7, e1000209 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Getz, W. M. Biomass transformation webs provide a unified approach to consumer–resource modeling. Ecol. Lett. 14, 113–124 (2011)

    Article  PubMed  Google Scholar 

  24. Hoek, W. Z. The last glacial-interglacial transition. Episodes 31, 226–229 (2008)

    Article  Google Scholar 

  25. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Marshall, C. R. Explaining the Cambrian “Explosion” of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown, J. H. et al. Energetic limits to economic growth. Bioscience 61, 19–26 (2011)

    Article  Google Scholar 

  29. McDaniel, C. N. & Borton, D. N. Increased human energy use causes biological diversity loss and undermines prospects for sustainability. Bioscience 52, 929–936 (2002)

    Article  Google Scholar 

  30. Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006)

    Article  Google Scholar 

  31. United Nations, Department of Economic and Social Affairs. World Population Prospects, the 2010 Revision, http://esa.un.org/unpd/wpp/Analytical-Figures/htm/fig_1.htm (2011)

  32. Population Reference Bureau. Population Projections 2050, http://www.prb.org/DataFinder/Topic/Rankings.aspx?ind=15 (2012)

  33. United Nations. World Population to 2300 1–254 (United Nations, Department of Economic and Social Affairs Population Division, 2004)

  34. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011)This paper provides estimates for the amount of land that has been transformed by agricultural activities and summarizes steps required to feed 9,000,000,000 people.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H. & Matson, P. A. Human appropriation of the products of photosynthesis. Bioscience 36, 368–373 (1986)

    Article  Google Scholar 

  36. Maurer, B. A. Relating human population growth to the loss of biodiversity. Biodivers. Lett. 3, 1–5 (1996)

    Article  ADS  Google Scholar 

  37. Blois, J. L. & Hadly, E. A. Mammalian response to Cenozoic climatic change. Annu. Rev. Earth Planet. Sci. 37, 181–208 (2009)

    Article  ADS  CAS  Google Scholar 

  38. Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011)

    Article  ADS  PubMed  Google Scholar 

  41. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006)

    Article  Google Scholar 

  42. Ellis, E. C., Antill, E. C. & Kref, H. Plant biodiversity in the Anthropocene. PLoS ONE 7, e30535 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vié, J.-C., Hilton-Taylor, C., Stuart, S. N., eds. Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species 180 (IUCN, 2009)

  44. Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl Acad. Sci. USA 102, 5443–5447 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Graham, R. W. et al. Spatial response of mammals to late Quaternary environmental fluctuations. Science 272, 1601–1606 (1996)

  50. Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–774 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Carrasco, M. A., Barnosky, A. D. & Graham, R. W. Quantifying the extent of North American mammal extinction relative to the pre-anthropogenic baseline. PLoS ONE 4, e8331 (2009)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  52. Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ 5, 475–482 (2007)

    Article  Google Scholar 

  53. Williams, J. W., Shuman, B. N. & Webb, T., III Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology 82, 3346–3362 (2001)

    Google Scholar 

  54. Williams, J. W., Shuman, B. N., Webb, T., III, Bartlein, P. J. & Leduc, P. L. Late Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol. Monogr. 74, 309–334 (2004)

    Article  Google Scholar 

  55. Hadly, E. A. et al. Genetic response to climatic change: insights from ancient DNA and phylochronology. PLoS Biol. 2, e290 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561–1565 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004)

    Article  CAS  Google Scholar 

  58. Lister, A. M. The impact of Quaternary Ice Ages on mammalian evolution. Phil. Trans. R. Soc. Lond. B 359, 221–241 (2004)

    Article  Google Scholar 

  59. Barnosky, A. D., Carrasco, M. A. & Graham, R. W. in Comparing the Geological and Fossil Records: Implications for Biodiversity Studies (eds McGowan, A. J. & Smith, A. B. ) 179–189 (Geological Society, 2011)

    Google Scholar 

  60. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. 428, 932–935 (2004)

  62. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Shearer, A. W. Whether the weather: comments on ‘An abrupt climate change scenario and its implications for United States national security’. Futures 37, 445–463 (2005)

    Article  Google Scholar 

  65. Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bascompte, J. & Solé, R. V. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 65, 465–473 (1996)

    Article  Google Scholar 

  67. Swift, T. L. & Hannon, S. J. Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol. Rev. Camb. Philos. Soc. 85, 35–53 (2010)This paper synthesizes studies that quantify thresholds of habitat disturbance above which regime shifts can propagate to undisturbed patches.

    Article  PubMed  Google Scholar 

  68. Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012)

    Article  PubMed  Google Scholar 

  69. Pardini, R., Bueno, A. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bradonjić, M. & Hagberg, A. &. Percus, A. G. in Algorithms and Models for the Web-Graph (WAW 2007) (eds Bonato, A. & Chung, F. ) 209–216 (Springer, 2007)

  71. McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Holtgrieve, G. W. et al. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science 334, 1545–1548 (2011)This paper documents how human impacts are reaching into remote ecosystems.

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Peñuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2012)

    Article  ADS  Google Scholar 

  74. Johnson, K. G. et al. Climate change and biosphere response: unlocking the collections vault. Bioscience 61, 147–153 (2011)

    Article  Google Scholar 

  75. Ramakrishnan, U., Hadly, E. A. & Mountain, J. L. Detecting past population bottlenecks using temporal genetic data. Mol. Ecol. 14, 2915–2922 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Phil. Trans. R. Soc. B 365, 3101–3112 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002)

    Article  Google Scholar 

  78. Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. A 369, 835–841 (2011)

    Article  ADS  PubMed  Google Scholar 

  79. Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968–972 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Hadly, E. A. & Barnosky, A. D. in Conservation Paleobiology: Using the Past to Manage for the Future (eds Dietl, G. P. & Flessa, K. W. ) 39–59 (Paleontological Society, 2009)This paper summarized metrics that can be tracked through millennia and into the future to assess when ecosystems are perturbed from the Holocene baseline, and discusses conservation strategies that will be needed in the future.

    Google Scholar 

  81. Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. & Erwin, D. H. Compilation and network analysis of Cambrian food webs. PLoS Biol. 6, e102 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Roopnarine, P. D. in Quantitative Methods in Paleobiology (eds Alroy, J. & Hunt, G. ) 143–161 (Paleontological Society, 2010)

    Google Scholar 

  83. Polly, P. D. et al. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. B 278, 1131–1140 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  84. Brown, J. H. Macroecology (Univ. Chicago Press, 1995)

    Google Scholar 

  85. Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (Oxford Univ. Press, 2011)This book presents comprehensive evidence that prevailing patterns in the spatial distribution, abundance and energetics of species in relatively undisturbed ecosystems are predicted by the maximum-information-entropy inference procedure, and that systematic departures from theory arise in highly disturbed ecosystems.

    Book  MATH  Google Scholar 

  86. Harte, J., Smith, A. B. & Storch, D. Biodiversity scales from plots to biomes with a universal species-area curve. Ecol. Lett. 12, 789–797 (2009)

    Article  PubMed  Google Scholar 

  87. White, E., Ernest, S., Kerkhoff, A. & Enquist, B. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007)

    Article  PubMed  Google Scholar 

  88. Williams, R. J. Simple MaxEnt models explain foodweb degree distributions. Theor. Ecol. 3, 45–52 (2010)

    Article  Google Scholar 

  89. Anderson, C. N. K., Ramakrishnan, U., Chan, Y. L. & Hadly, E. A. Serial SimCoal: a population genetics model for data from multiple populations and points in time. Bioinformatics 21, 1733–1734 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. Brose, U., Williams, W. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006)

    Article  PubMed  Google Scholar 

  91. Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 6, 69–81 (2003)

    Article  Google Scholar 

  93. Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001)

    Article  Google Scholar 

  94. Kokkoris, G. D., Troumbis, A. Y. & Lawton, J. H. Patterns of species interaction strength in assembled theoretical competition communities. Ecol. Lett. 2, 70–74 (1999)

    Article  Google Scholar 

  95. McCann, K. & Hastings, A. &. Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998)

    Article  ADS  CAS  Google Scholar 

  96. Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Sahasrabudhe, S. & Motter, A. E. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nature Commun. 2, 170 (2011)

    Article  ADS  CAS  Google Scholar 

  98. Kéfi, S. et al. More than a meal: integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012)

    Article  PubMed  Google Scholar 

  99. Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jr, Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Berlow, E. L. et al. Simple prediction of interaction strengths in complex food webs. Proc. Natl Acad. Sci. USA 106, 187–191 (2009)This computational exploration of complex network structure and dynamics successfully predicts the quantitative effect of a species loss on other species within its community and therefore demonstrates the potential of ecological network theory to predict state changes following species loss.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research grew out of a workshop funded by The University of California at Berkeley Office of the Vice Chancellor for Research under the auspices of the Berkeley Initiative for Global Change Biology. We thank J. Jackson for discussions and Paul Ehrlich for comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the workshop and discussions that resulted in this paper, and provided key insights from their respective research specialties. A.D.B. and E.A.H. were the lead writers and synthesizers. J.B., E.L.B., J.H.B., M.F., W.M.G., J.H., A.H., A.M., P.A.M, N.D.M., P.R., G.V. and J.W.W. compiled data and/or figures and wrote parts of the text. R.G., J.K., C.M., N.M., D.P.M., E.R. and A.B.S. contributed to finalizing the text.

Corresponding author

Correspondence to Anthony D. Barnosky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnosky, A., Hadly, E., Bascompte, J. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012). https://doi.org/10.1038/nature11018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing