Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase

Abstract

Thiamine pyrophosphate 1 is an essential cofactor in all living systems1. Its biosynthesis involves the separate syntheses of the pyrimidine 2 and thiazole 3 precursors, which are then coupled2. Two biosynthetic routes to the thiamine thiazole have been identified. In prokaryotes, five enzymes act on three substrates to produce the thiazole via a complex oxidative condensation reaction, the mechanistic details of which are now well established2,3,4,5,6. In contrast, only one gene product is involved in thiazole biosynthesis in eukaryotes (THI4p in Saccharomyces cerevisiae)7. Here we report the preparation of fully active recombinant wild-type THI4p, the identification of an iron-dependent sulphide transfer reaction from a conserved cysteine residue of the protein to a reaction intermediate and the demonstration that THI4p is a suicide enzyme undergoing only a single turnover.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thiamine pyrophosphate and thiamine thiazole biosynthesis.
Figure 2: Identification of the site of the M − 34 Da modification in wtTHI4p.
Figure 3: Reconstitution of the biosynthesis of ADT 5.
Figure 4: Characterization of native THI4p from S. cerevisiae.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates for the crystal structure of THI4p reported here have been deposited in the Protein Data Bank under accession code 3FPZ. This entry includes structure factors originally contained within PDB accession code 2GJC.

References

  1. Jordan, F. in Comprehensive Natural Products Chemistry II: Chemistry and Biology (eds Mander, L. & Liu, H.-W. ) 561–598 (Elsevier, 2010)

    Book  Google Scholar 

  2. Begley, T. P. Cofactor biosynthesis: an organic chemist’s treasure trove. Nat. Prod. Rep. 23, 15–25 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Begley, T. P. & Ealick, S. E. in Comprehensive Natural Products Chemistry II: Chemistry and Biology (eds Mander, L. & Liu, H.-W. ) 547–560 (Elsevier, 2010)

    Book  Google Scholar 

  4. Jurgenson, C. T., Begley, T. P. & Ealick, S. E. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 78, 569–603 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hazra, A. B. et al. Missing enzyme in thiamin thiazole biosynthesis: identification of TenI as a thiazole tautomerase. J. Am. Chem. Soc. 133, 9311–9319 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kriek, M. et al. Thiazole synthase from Escherichia coli: an investigation of the substrates and purified proteins required for activity in vitro. J. Biol. Chem. 282, 17413–17423 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Praekelt, U. M., Byrne, K. L. & Meacock, P. A. Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae. Yeast 10, 481–490 (1994)

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee, A., Jurgenson, C. T., Schroeder, F. C., Ealick, S. E. & Begley, T. P. Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate. J. Am. Chem. Soc. 129, 2914–2922 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jurgenson, C. T., Chatterjee, A., Begley, T. P. & Ealick, S. E. Structural insights into the function of the thiamin biosynthetic enzyme Thi4 from Saccharomyces cerevisiae. Biochemistry 45, 11061–11070 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Chatterjee, A., Jurgenson, C. T., Schroeder, F. C., Ealick, S. E. & Begley, T. P. Thiamin biosynthesis in eukaryotes: characterization of the enzyme-bound product of thiazole synthase from Saccharomyces cerevisiae and its implications in thiazole biosynthesis. J. Am. Chem. Soc. 128, 7158–7159 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee, A., Schroeder, F. C., Jurgenson, C. T., Ealick, S. E. & Begley, T. P. Biosynthesis of the thiamin-thiazole in eukaryotes: identification of a thiazole tautomer intermediate. J. Am. Chem. Soc. 130, 11394–11398 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Godoi, P. H. et al. Structure of the thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. J. Biol. Chem. 281, 30957–30966 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Faou, P. & Tropschug, M. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast THI4p function in the synthesis of vitamin B1. J. Mol. Biol. 344, 1147–1157 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Teo, I., Sedgwick, B., Kilpatrick, M. W., McCarthy, T. V. & Lindahl, T. The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell 45, 315–324 (1986)

    Article  CAS  PubMed  Google Scholar 

  15. Sedgwick, B., Robins, P., Totty, N. & Lindahl, T. Functional domains and methyl acceptor sites of the Escherichia coli Ada protein. J. Biol. Chem. 263, 4430–4433 (1988)

    CAS  PubMed  Google Scholar 

  16. Demple, B. et al. Active site and complete sequence of the suicidal methyltransferase that counters alkylation mutagenesis. Proc. Natl Acad. Sci. USA 82, 2688–2692 (1985)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Machado, C. R. et al. Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. J. Mol. Biol. 273, 114–121 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz-Roldán, C. et al. The Fusarium oxysporum sti35 gene functions in thiamine biosynthesis and oxidative stress response. Fungal Genet. Biol. 45, 6–16 (2008)

    Article  PubMed  Google Scholar 

  19. Medina-Silva, R. et al. Heat stress promotes mitochondrial instability and oxidative responses in yeast deficient in thiazole biosynthesis. Res. Microbiol. 157, 275–281 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  21. Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. & Dodson, E. J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  23. DeLano, W. L. The PyMOL Molecular Graphics Systems, DeLano Scientific. (2002)

  24. Suter, B. et al. Examining protein–protein interactions using endogenously tagged yeast arrays: The cross-and-capture system. Genome Res. 17, 1774–1782 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ausubel, F. et al. Short Protocols in Molecular Biology 3rd edn (Wiley, 1995)

Download references

Acknowledgements

We thank F. W. McLafferty for initial FTMS analysis of THI4p. This research was funded by NIH grant DK44083 (to T.P.B.), the Robert E. Welch Foundation grant A-0034 (to T.P.B.), DK67081 (to S.E.E.) and NSF grant DBI0821700 (to D.H.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.C. performed all biochemical experiments with recombinantly expressed THI4p, N.D.A. performed all biochemical experiments with endogenous THI4p from yeast, S.B. performed structural analyses, P.C.D. supervised FTMS experiments and assisted in FTMS data analyses, and P.-J.P. performed the sequence analysis by mass spectrometry on endogenous THI4p. D.H.R. supervised the mass spectrometric analysis on endogenous THI4p, S.E.E. supervised the structural studies and T.P.B. supervised the biochemical studies.

Corresponding authors

Correspondence to Steven E. Ealick or Tadhg P. Begley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends and Supplementary Table 1. (PDF 651 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, A., Abeydeera, N., Bale, S. et al. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature 478, 542–546 (2011). https://doi.org/10.1038/nature10503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10503

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing