Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients

Abstract

Patients with dyskeratosis congenita (DC), a disorder of telomere maintenance, suffer degeneration of multiple tissues1,2,3. Patient-specific induced pluripotent stem (iPS) cells4 represent invaluable in vitro models for human degenerative disorders like DC. A cardinal feature of iPS cells is acquisition of indefinite self-renewal capacity, which is accompanied by induction of the telomerase reverse transcriptase gene (TERT)5,6,7. We investigated whether defects in telomerase function would limit derivation and maintenance of iPS cells from patients with DC. Here we show that reprogrammed DC cells overcome a critical limitation in telomerase RNA component (TERC) levels to restore telomere maintenance and self-renewal. We discovered that TERC upregulation is a feature of the pluripotent state, that several telomerase components are targeted by pluripotency-associated transcription factors, and that in autosomal dominant DC, transcriptional silencing accompanies a 3′ deletion at the TERC locus. Our results demonstrate that reprogramming restores telomere elongation in DC cells despite genetic lesions affecting telomerase, and show that strategies to increase TERC expression may be therapeutically beneficial in DC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Derivation and characterization of DKC1 mutant iPS cells.
Figure 2: Telomere elongation in DKC1 mutant iPS cells.
Figure 3: Upregulation of TERC and DKC1 in iPS cells.
Figure 4: Transcriptional silencing is associated with a 3′ deletion in the TERC locus.

Similar content being viewed by others

References

  1. Kirwan, M. & Dokal, I. Dyskeratosis congenita: a genetic disorder of many faces. Clin. Genet. 73, 103–112 (2008)

    Article  CAS  Google Scholar 

  2. Mason, P. J., Wilson, D. B. & Bessler, M. Dyskeratosis congenita–a disease of dysfunctional telomere maintenance. Curr. Mol. Med. 5, 159–170 (2005)

    Article  CAS  Google Scholar 

  3. Calado, R. T. & Young, N. S. Telomere maintenance and human bone marrow failure. Blood 111, 4446–4455 (2008)

    Article  CAS  Google Scholar 

  4. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008)

    Article  CAS  Google Scholar 

  5. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  Google Scholar 

  7. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Marion, R. M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154 (2009)

    Article  CAS  Google Scholar 

  9. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998)

    Article  CAS  Google Scholar 

  10. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Wong, J. M. & Collins, K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 20, 2848–2858 (2006)

    Article  CAS  Google Scholar 

  12. Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002)

    Article  Google Scholar 

  13. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998)

    Article  CAS  Google Scholar 

  15. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Westin, E. R. et al. Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell 6, 383–394 (2007)

    Article  CAS  Google Scholar 

  17. Cairney, C. J. & Keith, W. N. Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90, 13–23 (2008)

    Article  CAS  Google Scholar 

  18. Yi, X., Tesmer, V. M., Savre-Train, I., Shay, J. W. & Wright, W. E. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol. Cell. Biol. 19, 3989–3997 (1999)

    Article  CAS  Google Scholar 

  19. Montanaro, L. et al. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol. 210, 10–18 (2006)

    Article  CAS  Google Scholar 

  20. Fu, D. & Collins, K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol. Cell 11, 1361–1372 (2003)

    Article  CAS  Google Scholar 

  21. Marrone, A., Stevens, D., Vulliamy, T., Dokal, I. & Mason, P. J. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 104, 3936–3942 (2004)

    Article  CAS  Google Scholar 

  22. Trahan, C. & Dragon, F. Dyskeratosis congenita mutations in the H/ACA domain of human telomerase RNA affect its assembly into a pre-RNP. RNA 15, 235–243 (2009)

    Article  CAS  Google Scholar 

  23. Broccoli, D., Young, J. W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl Acad. Sci. USA 92, 9082–9086 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Chiu, C. P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248 (1996)

    Article  CAS  Google Scholar 

  25. Hiyama, K. et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711–3715 (1995)

    CAS  PubMed  Google Scholar 

  26. Allsopp, R. C., Morin, G. B., DePinho, R., Harley, C. B. & Weissman, I. L. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102, 517–520 (2003)

    Article  CAS  Google Scholar 

  27. Kirwan, M. et al. Exogenous TERC alone can enhance proliferative potential, telomerase activity and telomere length in lymphocytes from dyskeratosis congenita patients. Br. J. Haematol. 144, 771–781 (2009)

    Article  CAS  Google Scholar 

  28. Liu, L. et al. Telomere lengthening early in development. Nature Cell Biol. 9, 1436–1441 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006)

    Article  CAS  Google Scholar 

  30. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998)

    Article  CAS  Google Scholar 

  31. Park, I. H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nature Protocols 3, 1180–1186 (2008)

    Article  CAS  Google Scholar 

  32. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R. R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995)

    Article  CAS  Google Scholar 

  33. Yam, P. Y. et al. Design of HIV vectors for efficient gene delivery into human hematopoietic cells. Mol. Ther. 5, 479–484 (2002)

    Article  CAS  Google Scholar 

  34. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990)

    Article  ADS  CAS  Google Scholar 

  35. Atkinson, S. P., Hoare, S. F., Glasspool, R. M. & Keith, W. N. Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res. 65, 7585–7590 (2005)

    Article  CAS  Google Scholar 

  36. Li, S. et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res. 64, 4833–4840 (2004)

    Article  CAS  Google Scholar 

  37. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25, 681–686 (2007)

    Article  CAS  Google Scholar 

  38. Greenberg, M. E. & Bender, T. P. in Current Protocols in Molecular Biology Ch. 4, Unit 4.10 (Wiley, 2007)

    Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Institutes of Health (NIH) and the Manton Center for Orphan Disease Research (G.Q.D.); NIH K08HL089150, Amy Clare Potter Fellowship and Manton Center for Orphan Disease Research (S.A.); the Agency of Science, Technology and Research and the Institute of Medical Biology, Singapore (Y.-H.L.); NIH R01AG0227388 (F.D.G. and A.J.K.); and the James and Esther King Biomedical Research Program and MOST 973 project (2009CB941000) (D.L.K and L.L).

Author Contributions S.A. performed project planning, experimental work, data interpretation and preparation of the manuscript. Y.-H.L., I.-H.P., J.H., E.M.M., J.D.M., R.M.R., M.O., H.H. and S.L. performed experimental work. H.-H.N., F.D.G., D.L.K., A.J.K., L.L. and G.Q.D. participated in project planning, data interpretation and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Q. Daley.

Ethics declarations

Competing interests

George Q. Daley is a member of the scientific advisory boards of MPM Capital, Epizyme, Inc., and iPierian, Inc.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S14 with Legends, Supplementary Table 1, a Supplementary Note and Supplementary References. (PDF 3197 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, S., Loh, YH., McLoughlin, E. et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292–296 (2010). https://doi.org/10.1038/nature08792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08792

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing