Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering

Abstract

A new family of superconductors containing layers of iron arsenide1,2,3 has attracted considerable interest because of their high transition temperatures (Tc), some of which are >50 K, and because of similarities with the high-Tc copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping4. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase5,6,7,8,9. This resonance, which has also been observed in several heavy-fermion superconductors10,11,12, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface13, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range14. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface15. Here we report inelastic neutron scattering observations of a magnetic resonance below Tc in Ba0.6K0.4Fe2As2, a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of Ba0.6K0.4Fe2As2.
Figure 2: Resonant spin excitation in Ba0.6K0.4Fe2As2.
Figure 3: Energy dependence of the resonant spin excitation.
Figure 4: Temperature dependence of the resonant spin excitation.

Similar content being viewed by others

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05–0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008)

    Article  CAS  Google Scholar 

  2. Takahashi, H. et al. Superconductivity at 43 K in an iron-based layered compound LaO1-x F x FeAs. Nature 453, 376–378 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Ren, Z.-A. et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ (Re = rare-earth metal) without fluorine doping. Europhys. Lett. 83, 17002 (2008)

    Article  ADS  Google Scholar 

  4. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1-x F x FeAs systems. Nature 453, 899–902 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185, 86–92 (1991)

    Article  ADS  Google Scholar 

  6. Mook, H. A., Yethiraj, M., Aeppli, G., Mason, T. E. & Armstrong, T. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7 . Phys. Rev. Lett. 70, 3490–3493 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Fong, H. F. et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ . Nature 398, 588–591 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Dai, P., Mook, H. A., Aeppli, G., Hayden, S. M. & Dogan, F. Resonance as a measure of pairing correlations in the high-T c superconductor YBa2Cu3O6. 6 . Nature 406, 965–968 (2000)

    Article  ADS  CAS  Google Scholar 

  9. He, H. et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2CuO6+δ . Science 295, 1045–1047 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Sato, N. K. et al. Strong coupling between local moments and superconducting ‘heavy’ electrons in UPd2Al3 . Nature 410, 340–343 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Stock, C., Broholm, C., Hudis, J., Kang, H. J. & Petrovic, C. Spin resonance in the d-wave superconductor CeCoIn5 . Phys. Rev. Lett. 100, 087001 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Stockert, O. et al. Magnetism and superconductivity in the heavy-fermion compound CeCu2Si2 studied by neutron scattering. Physica B (Amsterdam) 403, 973–976 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Chang, J., Eremin, I., Thalmeier, P. & Fulde, P. Theory of magnetic excitons in the heavy-fermion superconductor UPd2Al3 . Phys. Rev. B 75, 024503 (2007)

    Article  ADS  Google Scholar 

  14. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx . Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Ding, H. et al. Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0. 6K0. 4Fe2As2 . Europhys. Lett. 83, 47001 (2008)

    Article  ADS  Google Scholar 

  16. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008)

    Article  ADS  Google Scholar 

  17. Sasmal, K. et al. Superconducting Fe-based compounds (A 1-xSrx)Fe2As2 with A = K and Cs with transition temperatures up to 37 K. Phys. Rev. Lett. 101, 107007 (2008)

    Article  ADS  Google Scholar 

  18. Park, T. et al. Pressure-induced superconductivity in CaFe2As2 . J. Phys. Condens. Matter 20, 322204 (2008)

    Article  Google Scholar 

  19. Huang, Q. et al. Magnetic order in BaFe2As2, the parent compound of the FeAs based superconductors in a new structural family. Preprint at 〈http://arxiv.org/abs/0806.2776v2〉 (2008)

  20. Bewley, R. I. et al. MERLIN, a new high count-rate spectrometer at ISIS. Physica B (Amsterdam) 385–386, 1029–1031 (2006)

    Article  ADS  Google Scholar 

  21. Liu, C. et al. K-doping dependence of the Fermi surface of the iron-arsenic Ba1-xKxFe2As2 superconductor using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 177005 (2008)

    Article  ADS  Google Scholar 

  22. Yang, L. et al. Band structure and electronic signature of the spin density waves in bilayer iron-oxypnictide BaFe2As2 . Preprint at 〈http://arxiv.org/abs/0806.2627v1〉 (2008)

  23. Korshunov, M. M. & Eremin, I. Theory of magnetic excitations in iron-based layered superconductors. Phys. Rev. B 78, 140509(R) (2008)

    Article  ADS  Google Scholar 

  24. Maier, T. A. & Scalapino, D. J. Theory of neutron scattering as a probe of the superconducting gap in the iron pnictides. Phys. Rev. B 78, 020514(R) (2008)

    Article  ADS  Google Scholar 

  25. Hüfner, S., Hossain, M. A., Damascelli, A. & Sawatzky, G. A. Two gaps make a high-temperature superconductor? Rep. Prog. Phys. 71, 062501 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with M. Norman and C. Stock. This work was supported by the Division of Materials Sciences and Engineering Division and the Scientific User Facilities Division of the Office of Basic Energy Sciences, US Department of Energy Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Osborn.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Results Supplementary Figures 1-2 with Legends, Supplementary Table 1 and Supplementary Data. (PDF 748 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christianson, A., Goremychkin, E., Osborn, R. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–932 (2008). https://doi.org/10.1038/nature07625

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07625

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing