Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials

Abstract

In recent years, considerable progress has been made in the development of novel porous materials with controlled architectures and pore sizes in the mesoporous range1,2,3,4. An important feature of these materials is the phenomenon of adsorption hysteresis: for certain ranges of applied pressure, the amount of a molecular species adsorbed by the mesoporous host is higher on desorption than on adsorption, indicating a failure of the system to equilibrate. Although this phenomenon has been known for over a century, the underlying internal dynamics responsible for the hysteresis remain poorly understood5,6,7,8,9. Here we present a combined experimental and theoretical study in which microscopic and macroscopic aspects of the relaxation dynamics associated with hysteresis are quantified by direct measurement and computer simulations of molecular models. Using nuclear magnetic resonance techniques10,11,12,13,14 and Vycor porous glass15,16 as a model mesoporous system, we have explored the relationship between molecular self-diffusion and global uptake dynamics. For states outside the hysteresis region, the relaxation process is found to be essentially diffusive in character; within the hysteresis region, the dynamics slow down dramatically and, at long times, are dominated by activated rearrangement of the adsorbate density within the host material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental adsorption isotherm and effective diffusivities of cyclohexane in Vycor porous glass.
Figure 2: Simulated adsorption/desorption isotherm and effective diffusivities for a lattice model of a fluid confined in a Vycor porous glass.
Figure 3: Experimental transient sorption of cyclohexane in Vycor porous glass.
Figure 4: Simulated transient sorption for a lattice model of a fluid confined in Vycor porous glass.

Similar content being viewed by others

References

  1. Schüth, F., Sing, K. S. W. & Weitkamp, J. (eds). Handbook of Porous Solids (Wiley-VCH, Weinheim, 2002)

  2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Sing, K. S. W., Rouquerol, F. & Rouquerol, J. Adsorption by Powders and Solids (Academic, London, 1999)

  4. Barton, T. J. et al. Tailored porous materials. Chem. Mater. 11, 2633–2656 (1999)

    Article  CAS  Google Scholar 

  5. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R. & Sliwinska-Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 62, 1573–1659 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Kierlik, E., Monson, P. A., Rosinberg, M. L., Sarkisov, L. & Tarjus, G. Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior. Phys. Rev. Lett. 87, 055701 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Bocquet, L., Charlaix, E., Ciliberto, S. & Crassous, J. Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735–737 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Woo, H. J. & Monson, P. A. Phase behavior and dynamics of fluids in mesoporous glasses. Phys. Rev. E 67, 041207 (2003)

    Article  ADS  Google Scholar 

  9. Wallacher, D., Kunzner, N., Kovalev, D., Knorr, N. & Knorr, K. Capillary condensation in linear mesopores of different shape. Phys. Rev. Lett. 92, 195704 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Kärger, J., Pfeifer, H. & Heink, W. Principles and application of self-diffusion measurements by nuclear magnetic resonance. Adv. Magn. Reson. 12, 2–89 (1988)

    Google Scholar 

  11. Callaghan, P. T. Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, 1991)

  12. Beyea, S. D., Caprihan, A., Glass, S. J. & DiGiovanni, A. Nondestructive characterization of nanopore microstructure: Spatially resolved Brunauer-Emmett-Teller isotherms using nuclear magnetic resonance imaging. J. Appl. Phys. 94, 935–941 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Valiullin, R., Kortunov, P., Kärger, J. & Timoshenko, V. Concentration-dependent self-diffusion of liquids in nanopores: A nuclear magnetic resonance study. J. Chem. Phys. 120, 11804–11814 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Valiullin, R., Kortunov, P., Kärger, J. & Timoshenko, V. Concentration-dependent self-diffusion of adsorbates in mesoporous materials. Magn. Reson. Imaging 23, 209–214 (2005)

    Article  CAS  Google Scholar 

  15. Levitz, P., Ehret, G., Sinha, S. K. & Drake, J. M. Porous Vycor glass: The microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption. J. Chem. Phys. 95, 6151–6161 (1991)

    Article  ADS  CAS  Google Scholar 

  16. Kikkinides, E. S. et al. Combination of small angle scattering and three-dimensional stochastic reconstruction for the study of adsorption-desorption processes in Vycor porous glass. J. Chem. Phys. 112, 9881–9887 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Evans, R. Fluids adsorbed in narrow pores — phase-equilibria and structure. J. Phys. Condens. Matter 2, 8989–9007 (1990)

    Article  ADS  Google Scholar 

  18. Sethna, J. P. et al. Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347–3350 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Fisher, D. S. Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986)

    Article  ADS  CAS  Google Scholar 

  20. Huse, D. A. Critical dynamics of random-field Ising systems with conserved order parameter. Phys. Rev. B 36, 5383–5387 (1987)

    Article  ADS  CAS  Google Scholar 

  21. Kärger, J. & Ruthven, D. M. Diffusion in Zeolites and Other Microporous Solids (Wiley & Sons, New York, 1992)

  22. Woo, H. J., Sarkisov, L. & Monson, P. A. Mean-field theory of fluid adsorption in a porous glass. Langmuir 17, 7472–7475 (2001)

    Article  CAS  Google Scholar 

  23. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Clarendon, Oxford, 1946)

  24. Rajniak, P., Soos, M. & Yang, R. T. Unified network model for adsorption–desorption in systems with hysteresis. Am. Inst. Chem. Eng. J. 45, 735–750 (1999)

    Article  CAS  Google Scholar 

  25. Lee, J. W., Shim, W. G. & Moon, H. Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM-48. Micropor. Mesopor. Mater. 73, 109–119 (2004)

    Article  CAS  Google Scholar 

  26. Ogielski, A. T. & Huse, D. A. Critical behavior of the three-dimensional dilute Ising antiferromagnet in a field. Phys. Rev. Lett. 56, 1298–1301 (1986)

    Article  ADS  CAS  Google Scholar 

  27. Dierker, S. B. & Wiltzius, P. Random-field transition of a binary liquid in a porous-medium. Phys. Rev. Lett. 58, 1865–1868 (1987)

    Article  ADS  CAS  Google Scholar 

  28. Smarsly, B. et al. Microstructural characterization of polystyrene-block-poly(ethylene oxide)-templated silica films with cubic-ordered spherical mesopores. Langmuir 19, 7295–7301 (2003)

    Article  CAS  Google Scholar 

  29. Levitz, P. Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport. Adv. Colloid Interf. Sci. 77, 71–106 (1998)

    Article  Google Scholar 

  30. Newman, M. E. J. & Barkema, G. T. Monte Carlo Methods in Statistical Physics (Oxford Univ. Press, Oxford, 1999)

Download references

Acknowledgements

Research on this project at the University of Massachusetts was supported by the National Science Foundation. R.V. and J.K. thank the German Science Foundation and the Alexander von Humboldt Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustem Valiullin.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiullin, R., Naumov, S., Galvosas, P. et al. Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 443, 965–968 (2006). https://doi.org/10.1038/nature05183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05183

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing