Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genomic code for nucleosome positioning

Abstract

Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome–DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain 50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probabilistic nucleosome–DNA interaction model.
Figure 2: Genome-wide prediction of intrinsic nucleosome organization and comparison to literature-reported, experimentally identified 31 nucleosome positions.
Figure 5: Genomes encode unstable nucleosomes at transcriptional start sites.
Figure 3: Higher-order features of intrinsic nucleosome organization and comparison with in vivo occupancy experiments.
Figure 4: Intrinsic nucleosome occupancy varies with genomic location type and is low at functional transcription factor binding sites.

Similar content being viewed by others

References

  1. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986)

    Article  CAS  Google Scholar 

  3. Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 269–324 (2001)

    Article  CAS  Google Scholar 

  4. van Holde, K. E. Chromatin (Springer, New York, 1989)

    Book  Google Scholar 

  5. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001)

    Article  CAS  Google Scholar 

  6. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999)

    Article  CAS  Google Scholar 

  7. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Trifonov, E. N. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res. 8, 4041–4053 (1980)

    Article  CAS  Google Scholar 

  9. Sekinger, E. A., Moqtaderi, Z. & Struhl, K. Intrinsic histone–DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18, 735–748 (2005)

    Article  CAS  Google Scholar 

  10. Anderson, J. D. & Widom, J. Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol. Cell Biol. 21, 3830–3839 (2001)

    Article  CAS  Google Scholar 

  11. Thåström, A. et al. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 288, 213–229 (1999)

    Article  Google Scholar 

  12. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Cairns, B. R. Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr. Opin. Genet. Dev. 15, 185–190 (2005)

    Article  CAS  Google Scholar 

  14. Olson, W. K., Gorin, A. A., Lu, X. J., Hock, L. M. & Zhurkin, V. B. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc. Natl Acad. Sci. USA 95, 11163–11168 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Wang, J. P. & Widom, J. Improved alignment of nucleosome DNA sequences using a mixture model. Nucleic Acids Res. 33, 6743–6755 (2005)

    Article  CAS  Google Scholar 

  16. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–39 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998)

    Article  CAS  Google Scholar 

  18. Widlund, H. R. et al. Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807–817 (1997)

    Article  CAS  Google Scholar 

  19. Rabiner, L. R. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  20. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Li, S. & Smerdon, M. J. Nucleosome structure and repair of N-methylpurines in the GAL1–10 genes of Saccharomyces cerevisiae. J. Biol. Chem. 277, 44651–44659 (2002)

    Article  CAS  Google Scholar 

  22. Weiss, K. & Simpson, R. T. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol. Cell. Biol. 18, 5392–5403 (1998)

    Article  CAS  Google Scholar 

  23. Weiss, K. & Simpson, R. T. Cell type-specific chromatin organization of the region that governs directionality of yeast mating type switching. EMBO J. 16, 4352–4360 (1997)

    Article  CAS  Google Scholar 

  24. Moreira, J. M. & Holmberg, S. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17, 6028–6038 (1998)

    Article  CAS  Google Scholar 

  25. Shimizu, M., Roth, S. Y., Szent-Gyorgyi, C. & Simpson, R. T. Nucleosomes are positioned with base pair precision adjacent to the α2 operator in Saccharomyces cerevisiae. EMBO J. 10, 3033–3041 (1991)

    Article  CAS  Google Scholar 

  26. Kent, N. A., Tsang, J. S., Crowther, D. J. & Mellor, J. Chromatin structure modulation in Saccharomyces cerevisiae by centromere and promoter factor 1. Mol. Cell Biol. 14, 5229–5241 (1994)

    Article  CAS  Google Scholar 

  27. Verdone, L., Camilloni, G., Di Mauro, E. & Caserta, M. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation. Mol. Cell Biol. 16, 1978–1988 (1996)

    Article  CAS  Google Scholar 

  28. Almer, A., Rudolph, H., Hinnen, A. & Horz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986)

    Article  CAS  Google Scholar 

  29. Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905 (2004)

    Article  CAS  Google Scholar 

  30. Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O. & Schreiber, S. L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004)

    Article  Google Scholar 

  31. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005)

    Article  ADS  CAS  Google Scholar 

  32. Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005)

    Article  Google Scholar 

  33. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Article  CAS  Google Scholar 

  34. Kim, J. & Iyer, V. R. Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles. Mol. Cell Biol. 24, 8104–8112 (2004)

    Article  CAS  Google Scholar 

  35. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000)

    Article  CAS  Google Scholar 

  36. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000)

    Article  CAS  Google Scholar 

  37. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 3364–3369 (2000)

    Article  ADS  CAS  Google Scholar 

  39. Casolari, J. M. et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117, 427–439 (2004)

    Article  CAS  Google Scholar 

  40. Robert, F. et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol. Cell 16, 199–209 (2004)

    Article  CAS  Google Scholar 

  41. Li, H., Rhodius, V., Gross, C. & Siggia, E. D. Identification of the binding sites of regulatory proteins in bacterial genomes. Proc. Natl Acad. Sci. USA 99, 11772–11777 (2002)

    Article  ADS  CAS  Google Scholar 

  42. Basehoar, A. D., Zanton, S. J. & Pugh, B. F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004)

    Article  CAS  Google Scholar 

  43. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000)

    Article  ADS  CAS  Google Scholar 

  44. Thåström, A., Bingham, L. M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone–DNA interactions and nucleosome positioning. J. Mol. Biol. 338, 695–709 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Travers for providing the chicken nucleosome core DNA sequences; M. Kubista for providing selected mouse DNA sequences; O. Rando for providing access to their nucleosome data before publication; J. Lieb, E. Nili and P. Jones for sharing their respective unpublished data; Y. Lubling for creating the supplementary website; and H. Chang, N. Friedman, U. Gaul, A. Matouschek, B. Meyer, M. Ptashne, E. Siggia and A. Tanay for useful comments on the manuscript. E.S. was supported by a fellowship from the Center for Studies in Physics and Biology at Rockefeller University and by an NIH grant. J.W. thanks the Center for their hospitality during a sabbatical. J.-P.Z.W. acknowledges support from an NIH grant and J.W. acknowledges support from two NIH grants. E.S. is the incumbent of the Soretta and Henry Shapiro career development chair.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eran Segal or Jonathan Widom.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Figures 1–40, Supplementary Table 1, Supplementary Methods and Supplementary Notes. Supplementary Methods describe the data sets, molecular biology methods, computational models, and algorithms used. Supplementary Figures include many additional experimental and computational results. Supplementary Notes describe the role of periodicities and phase relationships of key dinucleotide steps, and the properties of our yeast nucleosome collection in comparison to literature-reported nucleosome positions. (PDF 1545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, E., Fondufe-Mittendorf, Y., Chen, L. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006). https://doi.org/10.1038/nature04979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04979

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing