Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation

Abstract

The eight catalytic subunits of the mammalian phosphoinositide-3-OH kinase (PI(3)K) family form the backbone of an evolutionarily conserved signalling pathway; however, the roles of most PI(3)K isoforms in organismal physiology and disease are unknown. To delineate the role of p110α, a ubiquitously expressed PI(3)K involved in tyrosine kinase and Ras signalling, here we generated mice carrying a knockin mutation (D933A) that abrogates p110α kinase activity. Homozygosity for this kinase-dead p110α led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signalling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor-1 and leptin action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinaemia, glucose intolerance, hyperphagia and increased adiposity in mice heterozygous for the D933A mutation. This signalling function of p110α derives from its highly selective recruitment and activation to IRS signalling complexes compared to p110β, the other broadly expressed PI(3)K isoform, which did not contribute to IRS-associated PI(3)K activity. p110α was the principal IRS-associated PI(3)K in cancer cell lines. These findings demonstrate a critical role for p110α in growth factor and metabolic signalling and also suggest an explanation for selective mutation or overexpression of p110α in a variety of cancers1,2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of action of p110α D933A knockin strategy and effect on signalling and growth in p110α D933A/D933A embryos and p110α D933A/WT mice.
Figure 2: Hyperinsulinaemia, impaired glucose and insulin tolerance, increased food intake, increased adiposity and hyperleptinaemia in p110α D933A/WT mice.
Figure 3: Normal proximal insulin receptor signalling events but impaired PI(3)K pathway activation in p110α D933A/WT mice.
Figure 4: Selective engagement of p110α in IRS signalling.

Similar content being viewed by others

References

  1. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nature Genet. 21, 99–102 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. & Foukas, L. C. Signalling by PI3K isoforms: Insights from gene-targeted mice. Trends Biochem. Sci. 30, 194–204 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Bi, L., Okabe, I., Bernard, D. J. & Nussbaum, R. L. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm. Genome 13, 169–172 (2002)

    CAS  PubMed  Google Scholar 

  6. Brachmann, S. M., Ueki, K., Engelman, J. A., Kahn, R. C. & Cantley, L. C. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol. Cell. Biol. 25, 1596–1607 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fruman, D. A. et al. Hypoglycemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nature Genet. 26, 379–382 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Dupont, J. & Holzenberger, M. Biology of insulin-like growth factors in development. Birth Defects Res. C Embryo Today 69, 257–271 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Lawlor, M. A. et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 21, 3728–3738 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kozma, S. C. & Thomas, G. Regulation of cell size in growth development and human disease: PI3K, PKB and S6K. Bioessays 24, 65–71 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Choudhury, A. I. et al. The role of insulin receptor substrate 2 in hypothalamic and β cell function. J. Clin. Invest. 115, 940–950 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. White, M. F. Insulin signaling in health and disease. Science 302, 1710–1711 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Niswender, K. D. et al. Intracellular signalling: Key enzyme in leptin-induced anorexia. Nature 413, 794–795 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes 52, 227–231 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Xu, A. W. et al. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J. Clin. Invest. 115, 951–958 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Withers, D. J. Insulin receptor substrate proteins and neuroendocrine function. Biochem. Soc. Trans. 29, 525–529 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Wang, Q., Bilan, P. J., Tsakiridis, T., Hinek, A. & Klip, A. Actin filaments participate in the relocalization of phosphatidylinositol 3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3–L1 adipocytes. Biochem. J. 331, 917–928 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asano, T. et al. p110β is up-regulated during differentiation of 3T3–L1 cells and contributes to the highly insulin-responsive glucose transport activity. J. Biol. Chem. 275, 17671–17676 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Roche, S., Downward, J., Raynal, P. & Courtneidge, S. A. A function for phosphatidylinositol 3-kinase β (p85α-p110β) in fibroblasts during mitogenesis: Requirement for insulin- and lysophosphatidic acid-mediated signal transduction. Mol. Cell. Biol. 18, 7119–7129 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hooshmand-Rad, R. et al. The PI 3-kinase isoforms p110α and p110β have differential roles in PDGF- and insulin-mediated signaling. J. Cell Sci. 113, 207–214 (2000)

    CAS  PubMed  Google Scholar 

  23. Jackson, S. P. et al. PI 3-kinase p110β: A new target for antithrombotic therapy. Nature Med. 11, 507–514 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Beeton, C. A., Chance, E. M., Foukas, L. C. & Shepherd, P. R. Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110α and p110β catalytic subunits of class-Ia phosphoinositide 3-kinases. Biochem. J. 350, 353–359 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurosu, H. et al. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272, 24252–24256 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. Kubo, H., Hazeki, K., Takasuga, S. & Hazeki, O. Specific role of p85/p110β in GTP-binding protein-mediated activation of Akt. Biochem. J. 392, 607–614 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nature Rev. Cancer 4, 505–518 (2004)

    Article  CAS  Google Scholar 

  28. Drees, B. E., Mills, G. B., Rommel, C. & Prestwich, G. D. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Expert Opin. Ther. Patents 14, 703–732 (2004)

    Article  CAS  Google Scholar 

  29. Amaravadi, R. & Thompson, C. B. The survival kinases Akt and Pim as potential pharmacological targets. J. Clin. Invest. 115, 2618–2624 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klippel, A., Escobedo, J. A., Hirano, M. & Williams, L. T. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14, 2675–2685 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Camps, T. Ruckle, C. Rommel (Serono Pharmaceutical Research Institute) and PIramed for pharmacological agents; W. Fantl for antibody reagents; and T. Arnett and I. Orriss for providing access and help with the DEXA scanner. Personal support for L.F., M.C. and K.O. was provided in part by a European Union FP5 Programme grant, and for W.P. by a European Union grant. The main grant support for this project was by Diabetes UK and the Ludwig Institute for Cancer Research (to B.V.) and by the Wellcome Trust and MRC (to D.J.W.), with additional support of the Biotechnology and Biological Science Research Council (to B.V.). The ISCR Gene Targeting Laboratory was supported by the Biotechnology and Biological Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Vanhaesebroeck.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures and Legends 1–4, Supplementary Methods and Supplementary Table 1. These provide a detailed description of the gene targeting strategy, organ and cell size measurements, additional data from glucose and insulin tolerance tests and a list of the organs subjected to histological examination. (PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foukas, L., Claret, M., Pearce, W. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006). https://doi.org/10.1038/nature04694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04694

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing