Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The breakdown of continuum models for mechanical contacts

Abstract

Forces acting within the area of atomic contact between surfaces play a central role in friction and adhesion. Such forces are traditionally calculated using continuum contact mechanics1, which is known to break down as the contact radius approaches atomic dimensions. Yet contact mechanics is being applied at ever smaller lengths, driven by interest in shrinking devices to nanometre scales2,3, creating nanostructured materials with optimized mechanical properties3,4, and understanding the molecular origins of macroscopic friction and adhesion5,6. Here we use molecular simulations to test the limits of contact mechanics under ideal conditions. Our findings indicate that atomic discreteness within the bulk of the solids does not have a significant effect, but that the atomic-scale surface roughness that is always produced by discrete atoms leads to dramatic deviations from continuum theory. Contact areas and stresses may be changed by a factor of two, whereas friction and lateral contact stiffness change by an order of magnitude. These variations are likely to affect continuum predictions for many macroscopic rough surfaces, where studies7,8 show that the total contact area is broken up into many separate regions with very small mean radius.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cylindrical surfaces with different atomic-scale roughness.
Figure 2: Variation of normal displacement, contact radius and friction with normal load.
Figure 3: Local pressure distributions for cylinders with different atomic-scale roughness.
Figure 4: Geometry and stress for spherical tips with and without adhesion.

Similar content being viewed by others

References

  1. Johnson, K. Contact Mechanics Ch. 4, 5, 13 (Cambridge Univ. Press, Cambridge, 1985)

    Book  Google Scholar 

  2. Nanotechnology (special issue). Sci. Am. 285(3), 32–85 (2001).

  3. Bhushan, B. (ed.) Springer Handbook of Nanotechnology (Springer, Berlin, 2003)

  4. Valiev, R. Nanomaterial advantage. Nature 419, 887–889 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Greenwood, J. A. A unified theory of surface roughness. Proc. R. Soc. Lond. A 393, 133–157 (1984)

    Article  ADS  Google Scholar 

  8. Hyun, S., Pei, L., Molinari, J.-F. & Robbins, M. O. Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Landman, U., Luedtke, W. D. & Gao, J. Atomic-scale issues in tribology: interfacial junctions and nano-elastohydrodynamics. Langmuir 12, 4514–4528 (1996)

    Article  CAS  Google Scholar 

  10. Miller, R. & Phillips, R. Critical analysis of local constitutive models for slip and decohesion. Phil. Mag. A 73, 803–828 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Vafek, O. & Robbins, M. O. Molecular dynamics study of the stress singularity at a corner. Phys. Rev. B 60, 12002–12006 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Persson, B. N. J. Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Carpick, R. W. & Salmeron, M. Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  Google Scholar 

  14. Lantz, M. A., O'Shea, S. J. & Welland, M. E. Simultaneous force and conduction measurements in atomic force microscopy. Phys. Rev. B 56, 15345–15352 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Schwarz, U. D., Zwörner, O., Koster, P. & Wiesendanger, R. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys. Rev. B 56, 6987–6996 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Enachescu, M. et al. Atomic force microscope study of an ideally hard contact: The diamond (111)/Tungsten carbide interface. Phys. Rev. Lett. 81, 1877–1880 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Kiely, J. D. & Houston, J. E. Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B57, 12588–12594 (1998)

    Article  ADS  Google Scholar 

  18. Carpick, R. W. & Eriksson, M. A. Measurements of in-plane material properties with scanning probe microscopy. MRS Bull. 29, 472–477 (2004)

    Article  CAS  Google Scholar 

  19. Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick-slip to continuous sliding in atomic friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Maugis, D. Adhesion of spheres: The JKR-DMT transition using a Dugdale model. J. Colloid Interf. Sci. 150, 243–269 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Müser, M. H., Wenning, L. & Robbins, M. O. Simple microscopic theory of Amontons's laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)

    Article  ADS  Google Scholar 

  22. Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Observation of superlubricity by scanning tunnelling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  24. Wenning, L. & Müser, M. H. Friction laws for elastic nano-scale contacts. Europhys. Lett. 54, 693–699 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Horn, R. G., Israelachvili, J. N. & Pribac, F. Measurement of the deformation and adhesion of solids in contact. J. Coll. Interf. Sci. 115, 480–492 (1987)

    Article  ADS  CAS  Google Scholar 

  26. Homola, A. M., Israelachvili, J. N., McGuiggan, P. M. & Gee, M. L. Fundamental experimental studies in tribology: The transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136, 65–83 (1990)

    Article  CAS  Google Scholar 

  27. Maeda, N., Chen, N., Tirrell, M. A. & Israelachvili, J. N. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379–382 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Shull, K. R. Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R. 36, 1–45 (2002)

    Article  Google Scholar 

  29. Newby, B.-m. A., Chaudhury, M. K. & Brown, H. R. Macroscopic evidence of the effect of interfacial slippage on adhesion. Science 269, 1407–1409 (1995)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. W. Carpick, J. N. Israelachvili, P. M. McGuiggan and M. H. Müser for useful discussions. This material is based upon work supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Robbins.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Supplementary Methods describing simulation potentials and Supplementary Figure S1 showing comparison of results for rigid and flexible tips. (PDF 127 kb)

Supplementary Figure S2

Variation of normal displacement, contact radius, friction and lateral stiffness with normal load for non-adhesive spherical tips. (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, B., Robbins, M. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005). https://doi.org/10.1038/nature03700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03700

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing