Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults

An Erratum to this article was published on 26 May 2005

Abstract

East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Quebrada (Q), Discovery (D), and Gofar (G) transform faults in the equatorial eastern Pacific, contoured with the bathymetry predicted from the satellite-derived gravity field42.
Figure 2: Space-time distribution of seismicity around the nine mainshocks (Mw ≥ 5.4) on the Discovery and Gofar transform faults between May 1996 and December 2001, from the declustered Harvard CMT catalogue.
Figure 3: Aftershocks per mainshock, plotted against the difference between the mainshock magnitude mmain and the catalogue completeness threshold m0.
Figure 4: Foreshock and aftershock rates observed for EPR transform faults (solid symbols) and Southern California (open symbols) in regions of radius R about the mainshock.
Figure 5: Retrospective application of the naive prediction algorithm described in the text to the NOAA-PMEL catalogue (May 1996–November 2001) for the Discovery and Gofar faults.
Figure 6: Molchan's39 error diagram of the failure-to-predict probability 1 - P(F|M) against the probability of alerts P(F) on a logarithmic scale, contoured with probability gain g (solid curves).

Similar content being viewed by others

References

  1. Jones, L. M. & Molnar, P. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. 84, 3596–3608 (1979)

    Article  ADS  Google Scholar 

  2. Abercrombie, R. E. & Mori, J. Occurrence patterns of foreshocks to large earthquakes in the Western United States. Nature 381, 303–307 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Felzer, K., Abercrombie, R. E. & Ekstrom, G. A common origin for aftershocks, foreshocks, and multiplets. Bull. Seismol. Soc. Am. 94(1), 88–98 (2004)

    Article  Google Scholar 

  4. Helmstetter, A., Sornette, D. & Grasso, J.-R. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws. J. Geophys. Res. 108, doi:10.1029/2002JB001991 (2003)

  5. Dodge, D. A., Ellsworth, W. E. & Beroza, G. C. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. J. Geophys. Res. 101, 22371–22392 (1996)

    Article  ADS  Google Scholar 

  6. Geller, R. J., Jackson, D. D., Kagan, Y. Y. & Mulargia, F. Earthquakes cannot be predicted. Science 275, 1616–1617 (1997)

    Article  CAS  Google Scholar 

  7. Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, Southwest Japan. Geophys. Res. Lett. 26, 3237–3240 (1999)

    Article  ADS  Google Scholar 

  8. Ozawa, S. et al. Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science 298, 1009–1012 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Ozawa, S. et al. Characteristic silent earthquakes in the eastern part of the Boso peninsula, Central Japan. Geophys. Res. Lett. 30, doi:10.1029/2002GL016665 (2003)

  10. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Kanamori, H. & Cipar, J. Focal process of the great Chilean earthquake. Phys. Earth Planet. Inter. 9, 128–136 (1974)

    Article  ADS  Google Scholar 

  12. Reasenberg, P. A. Foreshock occurrence before large earthquakes. J. Geophys. Res. 104, 4755–4768 (1999)

    Article  ADS  Google Scholar 

  13. Brune, J. N. Seismic moment, seismicity, and rate of slip along major fault zones. J. Geophys. Res. 73, 777–784 (1968)

    Article  ADS  Google Scholar 

  14. Bird, P., Kagan, Y. & Jackson, D. in Plate Boundary Zones (ed. Freymueller, S. S. a. J.) 203–218 (AGU, Washington DC, 2002)

    Google Scholar 

  15. Boettcher, M. S. & Jordan, T. H. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res. 109, doi:10.1029/2004JB003110 (2004)

  16. Bird, P. & Kagan, Y. Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic settings. Bull Seismol. Soc. Am. 94(6), 2380–2399 (2004)

    Article  Google Scholar 

  17. Perez-Campos, X., McGuire, J. J. & Beroza, G. C. Resolution of the slow earthquake/apparent stress paradox for oceanic transform fault earthquakes. J. Geophys. Res. 108, doi:10.1029/2002JB002312 (2003)

  18. Kanamori, H. & Stewart, G. S. Mode of strain release along the Gibbs fracture zone, Mid-Atlantic Ridge. Phys. Earth Planet. Inter. 11, 312–332 (1976)

    Article  ADS  Google Scholar 

  19. Ihmlé, P. F. & Jordan, T. H. Teleseismic search for slow precursors to large earthquakes. Science 266, 1547–1551 (1994)

    Article  ADS  Google Scholar 

  20. McGuire, J. J., Ihmlé, P. F. & Jordan, T. H. Time-domain observations of a slow precursor to the 1994 Romanche transform earthquake. Science 274, 82–85 (1996)

    Article  ADS  CAS  Google Scholar 

  21. McGuire, J. J. & Jordan, T. H. Further evidence for the compound nature of slow earthquakes: The Prince Edward Island earthquake of April 28, 1997. J. Geophys. Res. 105, 7819–7828 (2000)

    Article  ADS  Google Scholar 

  22. Forsyth, D. W., Yang, Y., Mangriotis, M.-D. & Shen, Y. Coupled seismic slip on adjacent oceanic transform faults. J. Geophys. Res. 30, doi:10.1029/2002GL016454 (2003)

  23. Abercrombie, R. E. & Ekstrom, G. Earthquake slip on oceanic transform faults. Nature 410, 74–77 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Fox, C. G., Matsumoto, H. & Lau, T. K. Monitoring Pacific Ocean seismicity from an autonomous hydrophone array. J. Geophys. Res. 163, 4183–4206 (2001)

    Article  ADS  Google Scholar 

  25. Fox, C. G. et al. Acoustic detection of seafloor spreading. J. Geophys. Res. 22, 131–134 (1995)

    Google Scholar 

  26. Smith, D. et al. Hydroacoustic monitoring of seismicity at the slow-spreading Mid-Atlantic Ridge. Geophys. Res. Lett. 29, 10.1029/2001GL013912 (2002)

  27. McGuire, J. J. Immediate foreshock sequences of oceanic transform earthquakes on the East Pacific Rise. Bull. Seismol. Soc. Am. 93, 948–952 (2003)

    Article  Google Scholar 

  28. Ekstrom, G., Dziewonski, A. M., Maternovskaya, N. N. & Nettles, M. Global seismicity of 2001; centroid-moment tensor solutions for 961 earthquakes. Phys. Earth Planet. Inter. 136, 165–185 (2003)

    Article  ADS  Google Scholar 

  29. Helmstetter, A. & Sornette, A. Bath's law derived from the Gutenberg-Richter law and from aftershock properties. Geophys. Res. Lett. 30, doi:10.1029/2003GL018186 (2003)

  30. Helmstetter, A. & Sornette, D. Importance of direct and indirect triggered seismicity in the ETAS model of seismicity. Geophys. Res. Lett. 30, 4, doi:10.129/2003GL017670 (2003)

  31. Ogata, Y. Statistical models for earthquake occurrence and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988)

    Article  Google Scholar 

  32. Bohnenstiehl, D. R., Tolstoy, M., Dziak, R. P., Fox, C. G. & Smith, D. Aftershocks in the mid-ocean ridge environment: An analysis using hydroacoustic data. Tectonophysics 354, 49–70 (2002)

    Article  ADS  Google Scholar 

  33. Helmstetter, A. Is earthquake triggering driven by small earthquakes? Phys. Rev. Lett. 91, 058501 (2003)

    Article  ADS  Google Scholar 

  34. Helmstetter, A., Kagan, Y. & Jackson, D. D. Importance of small earthquakes for stress transfers and earthquake triggering. J. Geophys. Res. (in the press)

  35. Helmstetter, A. & Sornette, D. Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res. 107, doi:10.1029/2001JB001580 (2002)

  36. Hanson, J. A. & Given, H. K. Accurate azimuth estimates from a large aperture hydrophone array using T-phase waveforms. Geophys. Res. Lett. 25, 365–368 (1998)

    Article  ADS  Google Scholar 

  37. Aki, K. in Earthquake Prediction (eds Simpson, D. W. & Richards, P. G.) 556–574 (AGU, Washington DC, 1981)

    Google Scholar 

  38. Keilis-Borok, V., Shebalin, P., Gabrielov, A. & Turcotte, D. Reverse tracing of short-term earthquake precursors. Phys. Earth Planet. Inter. 145, 75–85 (2004)

    Article  ADS  Google Scholar 

  39. Molchan, G. M. Earthquake prediction as a decision-making problem. Pure Appl. Geophys. 149, 233–247 (1997)

    Article  ADS  Google Scholar 

  40. Reasenberg, P. A. & Jones, L. M. Earthquake hazards after a mainshock in California. Science 243, 1173–1176 (1989)

    Article  ADS  CAS  Google Scholar 

  41. Reasenberg, P. A. & Jones, L. M. Earthquake aftershocks: Update. Science 265, 1251–1252 (1994)

    Article  ADS  CAS  Google Scholar 

  42. Sandwell, D. T. & Smith, W. H. F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 102, 10039–10054 (1997)

    Article  ADS  Google Scholar 

  43. Kisslinger, C. & Jones, L. M. Properties of aftershock sequences in Southern California. J. Geophys. Res. 96, 11947–11958 (1991)

    Article  ADS  Google Scholar 

  44. Yamanaka, Y. & Shimazaki, K. Scaling relationship between the number of aftershocks and the size of the main shock. J. Phys. Earth 38, 305–324 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Dziak for answering questions about details of the hydroacoustic earthquake catalogues, D. Bohnenstiehl for suggestions on clarifying the manuscript, A. Helmstetter for her help in understanding ETAS, and V. Keilis-Borok, I. Zaliapin, and L. Jones for discussions of earthquake prediction algorithms. J.J.McG. was supported by the Frank and Lisina Hoch Fund. M.S.B. was supported by the Deep Ocean Exploration Institute at WHOI. This work was supported by the NSF, SCEC and USGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. McGuire.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Discussion, Supplementary Tables S1-S4 and Supplementary Figures S1-S4. (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, J., Boettcher, M. & Jordan, T. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature 434, 457–461 (2005). https://doi.org/10.1038/nature03377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03377

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing