Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins

Abstract

During protein biosynthesis, nascent polypeptide chains that emerge from the ribosomal exit tunnel encounter ribosome-associated chaperones, which assist their folding to the native state1,2. Here we present a 2.7 Å crystal structure of Escherichia coli trigger factor, the best-characterized chaperone of this type, together with the structure of its ribosome-binding domain in complex with the Haloarcula marismortui large ribosomal subunit. Trigger factor adopts a unique conformation resembling a crouching dragon with separated domains forming the amino-terminal ribosome-binding ‘tail’, the peptidyl-prolyl isomerase ‘head’, the carboxy-terminal ‘arms’ and connecting regions building up the ‘back’. From its attachment point on the ribosome, trigger factor projects the extended domains over the exit of the ribosomal tunnel, creating a protected folding space where nascent polypeptides may be shielded from proteases and aggregation. This study sheds new light on our understanding of co-translational protein folding, and suggests an unexpected mechanism of action for ribosome-associated chaperones.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of E. coli trigger factor and its N-terminal domain bound to the 50S ribosomal subunit.
Figure 2: Structure of the trigger factor bound to the 50S ribosomal subunit.
Figure 3: Trigger factor exposes a hydrophobic cradle to the nascent chain.
Figure 4: A model for the interaction of trigger factor with nascent chains.

Similar content being viewed by others

References

  1. Bukau, B., Deuerling, E., Pfund, C. & Craig, E. A. Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000)

    Article  CAS  Google Scholar 

  2. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002)

    Article  CAS  Google Scholar 

  4. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Hardesty, B. & Kramer, G. Folding of a nascent peptide on the ribosome. Prog. Nucleic Acid Res. Mol. Biol. 66, 41–66 (2001)

    Article  CAS  Google Scholar 

  7. Agashe, V. R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004)

    Article  CAS  Google Scholar 

  8. Netzer, W. J. & Hartl, F. U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343–349 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Nicola, A. V., Chen, W. & Helenius, A. Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nature Cell Biol. 1, 341–345 (1999)

    Article  CAS  Google Scholar 

  10. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A. & Bukau, B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693–696 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Teter, S. A. et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with Trigger Factor in chaperoning nascent chains. Cell 97, 755–765 (1999)

    Article  CAS  Google Scholar 

  13. Hesterkamp, T., Deuerling, E. & Bukau, B. The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J. Biol. Chem. 272, 21865–21871 (1997)

    Article  CAS  Google Scholar 

  14. Kristensen, O. & Gajhede, M. Chaperone binding at the ribosomal exit tunnel. Structure (Camb.) 11, 1547–1556 (2003)

    Article  CAS  Google Scholar 

  15. Vogtherr, M. et al. NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein. J. Mol. Biol. 318, 1097–1115 (2002)

    Article  CAS  Google Scholar 

  16. Bitto, E. & McKay, D. B. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278, 49316–49322 (2003)

    Article  CAS  Google Scholar 

  17. Kramer, G. et al. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains. J. Bacteriol. 186, 3777–3784 (2004)

    Article  CAS  Google Scholar 

  18. Kramer, G. et al. Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J. Biol. Chem. 279, 14165–14170 (2004)

    Article  CAS  Google Scholar 

  19. Behrens, S., Maier, R., de Cock, H., Schmid, F. X. & Gross, C. A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001)

    Article  CAS  Google Scholar 

  20. Patzelt, H. et al. Three-state equilibrium of Escherichia coli trigger factor. Biol. Chem. 383, 1611–1619 (2002)

    Article  Google Scholar 

  21. Hesterkamp, T., Hauser, S., Lütcke, H. & Bukau, B. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc. Natl Acad. Sci. USA 93, 4437–4441 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Maier, R., Eckert, B., Scholz, C., Lilie, H. & Schmid, F. X. Interaction of trigger factor with the ribosome. J. Mol. Biol. 326, 585–592 (2003)

    Article  CAS  Google Scholar 

  23. Schatz, G. & Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519–1526 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome–Sec61 complex. Science 278, 2123–2126 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Otwinowski, Z. M. W. in Macromolecular Crystallography Part A Vol. 276 (ed. Carter, C. W. Jr, S.R.M.) 307–326 (Academic, San Diego, 1997)

    Book  Google Scholar 

  28. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  29. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  30. Jones, T. A., Bergdoll, M. & Kjeldgaard, O. in Crystallographic and Modeling Methods in Molecular Design (eds Bugg, C. & Ealick, S.) 189–195 (Springer-Verlag, New York, 1990)

    Book  Google Scholar 

Download references

Acknowledgements

Data collection was performed at the Swiss Light Source, Paul Scherrer Institut, Villigen and at the Swiss Norwegian Beamline (ESRF, Grenoble). We are grateful to C. Schulze-Briese, T. Tomizaki and A. Wagner at the SLS as well as P. Pattison and S. Capelli at the SNBL whose outstanding efforts have made these experiments possible. We also thank our colleagues S. Antolic, M. Steiner and members of the Ban laboratory for help in ribosome preparations and suggestions; and members of the Bukau laboratory for discussions. This work was supported by the Swiss National Science Foundation (SNSF), the NCCR Structural Biology program of the SNSF, an ETH research grant, grants of the Deutsche Forschungsgemeinschaft to B.B. and E.D. and a Young Investigator grant from the Human Frontier Science Program to N.B. and E.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elke Deuerling or Nenad Ban.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Example of experimental electron density quality. (JPG 122 kb)

Supplementary Figure 2

Structural flexibility of the Trigger Factor. (JPG 105 kb)

Supplementary Figure 3

Crystal contact sites of the full-length Trigger Factor. (JPG 59 kb)

Supplementary Figure 4

E.coli Trigger Factor associates with Haloarcula marismortui 50S and crosslinks to the ribosomal protein L23. (JPG 83 kb)

Supplementary Figure 5

Sequence conservation of L23 and ribosomal RNA at the TF binding site. (JPG 58 kb)

Supplementary Table

Data collection and refinement statistics. (DOC 42 kb)

Supplementary Figure Legends and methods used for figure preparation (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferbitz, L., Maier, T., Patzelt, H. et al. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431, 590–596 (2004). https://doi.org/10.1038/nature02899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02899

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing