Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Super-resolving phase measurements with a multiphoton entangled state

Abstract

Interference phenomena are ubiquitous in physics, often forming the basis of demanding measurements. Examples include Ramsey interferometry in atomic spectroscopy, X-ray diffraction in crystallography and optical interferometry in gravitational-wave studies1,2. It has been known for some time that the quantum property of entanglement can be exploited to perform super-sensitive measurements, for example in optical interferometry or atomic spectroscopy3,4,5,6,7. The idea has been demonstrated for an entangled state of two photons8, but for larger numbers of particles it is difficult to create the necessary multiparticle entangled states9,10,11. Here we demonstrate experimentally a technique for producing a maximally entangled three-photon state from initially non-entangled photons. The method can in principle be applied to generate states of arbitrary photon number, giving arbitrarily large improvement in measurement resolution12,13,14,15. The method of state construction requires non-unitary operations, which we perform using post-selected linear-optics techniques similar to those used for linear-optics quantum computing16,17,18,19,20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of production and detection of the state |3::0〉H,V3φ.
Figure 2: Super-resolving phase measurement with two and three photons.
Figure 3: Super-resolving phase measurement with a single detected polarization.

Similar content being viewed by others

References

  1. Barish, B. C. & Weiss, R. LIGO and the detection of gravitational waves. Phys. Today 52, 44–50 (1999)

    Article  Google Scholar 

  2. Caron, B. et al. The Virgo interferometer. Class. Quantum Gravity 14, 1461–1469 (1997)

    ADS  CAS  Google Scholar 

  3. Holland, M. J. & Burnett, K. Interferometric detection of optical-phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Dowling, J. P. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Ou, Z. Y. Fundamental quantum limit in precision phase measurement. Phys. Rev. A 55, 2598–2609 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Campos, R. A., Gerry, C. C. & Benmoussa, A. Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements. Phys. Rev. A 68, 023810 (2003)

    Article  ADS  Google Scholar 

  8. D'Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Zhao, Z. et al. Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 91, 180401 (2003)

    Article  ADS  Google Scholar 

  12. Kok, P., Lee, H. & Dowling, J. P. Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002)

    Article  ADS  Google Scholar 

  13. Fiurasek, J. Conditional generation of n-photon entangled states of light. Phys. Rev. A 65, 053818 (2002)

    Article  ADS  Google Scholar 

  14. Pryde, G. J. & White, A. G. Creation of maximally entangled photon-number states using optical fiber multiports. Phys. Rev. A 68, 052315 (2003)

    Article  ADS  Google Scholar 

  15. Hofmann, H. F. Generation of highly non-classical n-photon polarization states by super-bunching at a photon bottleneck. Preprint at 〈http://arxiv.org/quant-ph/0311198〉 (2003).

  16. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Franson, J. D., Donegan, M. M., Fitch, M. J., Jacobs, B. C. & Pittman, T. B. High-fidelity quantum logic operations using linear optical elements. Phys. Rev. Lett. 89, 137901 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Resch, K. J., Lundeen, J. S. & Steinberg, A. M. Conditional-phase switch at the single-photon level. Phys. Rev. Lett. 89, 037904 (2002)

    Article  ADS  Google Scholar 

  19. Mitchell, M. W., Ellenor, C. W., Schneider, S. & Steinberg, A. M. Diagnosis, prescription, and prognosis of a Bell-state filter by quantum process tomography. Phys. Rev. Lett. 91, 120402 (2003)

    Article  ADS  CAS  Google Scholar 

  20. O'Brien, J. L., Pryde, C. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Sanders, B. C., Milburn, G. J. & Zhang, Z. Optimal quantum measurements for phase-shift estimation in optical interferometry. J. Mod. Opt. 44, 1309–1320 (1997)

    ADS  Google Scholar 

  22. Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Rarity, J. G. et al. 2-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990)

    Article  ADS  CAS  Google Scholar 

  24. Ou, Z. Y., Zou, X. Y., Wang, L. J. & Mandel, L. Experiment on nonclassical 4th-order interference. Phys. Rev. A 42, 2957–2965 (1990)

    Article  ADS  CAS  Google Scholar 

  25. Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Rarity, J. C. & Tapster, P. R. Three-particle entanglement from entangled photon pairs and a weak coherent state. Phys. Rev. A 59, R35–R38 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Rarity, J. G., Tapster, P. R. & Loudon, R. Nonclassical interference between independent sources. Preprint at 〈http://arxiv.org/quant-ph/9702032〉 (1997).

  28. Takeuchi, S. Beamlike twin-photon generation by use of type II parametric downconversion. Opt. Lett. 26, 843–845 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Solomon, G. S., Pelton, M. & Yamamoto, Y. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 86, 3903–3906 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Resch and J. O'Brien for discussions, and J. Dowling and D. R. Schmulian for inspiration. This work was supported by the National Science and Engineering Research Council of Canada, Photonics Research Ontario, the Canadian Institute for Photonic Innovations and the DARPA-QuIST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Mitchell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, M., Lundeen, J. & Steinberg, A. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004). https://doi.org/10.1038/nature02493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing