Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices

Abstract

Nonlinear periodic lattices occur in a large variety of systems, such as biological molecules1, nonlinear optical waveguides2, solid-state systems3 and Bose–Einstein condensates4. The underlying dynamics in these systems is dominated by the interplay between tunnelling between adjacent potential wells and nonlinearity1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. A balance between these two effects can result in a self-localized state: a lattice or ‘discrete’ soliton1,2. Direct observation of lattice solitons has so far been limited to one-dimensional systems, namely in arrays of nonlinear optical waveguides2,9,10,11,12,13,14,15,16,17. However, many fundamental features are expected to occur in higher dimensions, such as vortex lattice solitons18, bright lattice solitons that carry angular momentum, and three-dimensional collisions between lattice solitons. Here, we report the experimental observation of two-dimensional (2D) lattice solitons. We use optical induction, the interference of two or more plane waves in a photosensitive material, to create a 2D photonic lattice in which the solitons form11,12. Our results pave the way for the realization of a variety of nonlinear localization phenomena in photonic lattices and crystals19,20,21,22,23. Finally, our observation directly relates to the proposed lattice solitons in Bose–Einstein condensates4, which can be observed in optically induced periodic potentials24,25.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme and a typical photonic lattice.
Figure 2: Numerical simulation results depicting the induced photonic lattice and the structure of an on-axis lattice soliton.
Figure 3: Experimental results presenting the propagation of a probe beam launched into a single waveguide at normal incidence (on-axis propagation).
Figure 4: Numerical simulation results depicting the induced photonic lattice and the propagation of a self-trapped staggered wave packet.
Figure 5: Experimental results presenting the propagation of a probe beam launched into a single waveguide.

Similar content being viewed by others

References

  1. Davydov, A. S. & Kislukha, N. I. Solitary excitations in one-dimensional molecular chains. Phys. Status Solidi B 59, 465–470 (1973)

    Article  ADS  CAS  Google Scholar 

  2. Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    Article  ADS  CAS  Google Scholar 

  3. Su, W. P., Schieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1968–1971 (1979)

    Article  Google Scholar 

  4. Trombettoni, A. & Smerzi, A. Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Xie, A., van der Meer, L., Hoff, W. & Austin, R. H. Long-lived amide I vibrational modes in myoglobin. Phys. Rev. Lett. 84, 5435–5438 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Trias, E., Mazo, J. J. & Orlando, T. P. Discrete breathers in nonlinear lattices: experimental detection in Josephson junctions. Phys. Rev. Lett. 84, 741–744 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Schwartz, U. T., English, L. Q. & Sievers, A. J. Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnet. Phys. Rev. Lett. 83, 223–226 (1999)

    Article  ADS  Google Scholar 

  8. Swanson, B. I. et al. Observation of intrinsically localized modes in a discrete low-dimensional material. Phys. Rev. Lett. 82, 3288–3301 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchinson, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Morandotti, R., Eisenberg, H. S., Silberberg, Y., Sorel, M. & Aitchison, J. S. Self-focusing and defocusing in waveguide arrays. Phys. Rev. Lett. 86, 3296–3299 (2000)

    Article  ADS  Google Scholar 

  11. Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically-induced real-time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003)

    Article  ADS  Google Scholar 

  12. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically-induced photonic lattices. Phys. Rev. E 66, 046602 (2002)

    Article  ADS  Google Scholar 

  13. Eisenberg, H., Silberberg, Y., Morandotti, R. & Aitchison, J. Diffraction management. Phys. Rev. Lett. 85, 1863–1866 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Ablowitz, M. J. & Musslimani, Z. H. Discrete diffraction-managed spatial solitons. Phys. Rev. Lett. 87, 254102 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Kivshar, Y. S. Self-localization in arrays of defocusing waveguides. Opt. Lett. 18, 1147–1149 (1993)

    Article  ADS  CAS  Google Scholar 

  16. Scott, A. C. & Macneil, L. Binding energy versus nonlinearity for a “small” stationary soliton. Phys. Lett. A 98, 87–88 (1983)

    Article  ADS  Google Scholar 

  17. Lederer, F., Darmanyan, S. & Kobyakov, A. in Spatial Solitons (eds Trillo, S. & Torruellas, W.) 269–292 (Springer, New York, 2001)

    Book  Google Scholar 

  18. Malomed, B. A. & Keverkidis, P. G. Discrete vortex solitons. Phys. Rev. E 64, 026601 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Chen, W. & Mills, D. L. Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160–163 (1987)

    Article  ADS  CAS  Google Scholar 

  20. Christodoulides, D. N. & Joseph, R. I. Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989)

    Article  ADS  CAS  Google Scholar 

  21. John, S. & Akozbek, N. Nonlinear optical solitary waves in a photonic band gap. Phys. Rev. Lett. 71, 1168–1171 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Mingaleev, S. F. & Kivshar, Y. S. Self-trapping and stable localized modes in nonlinear photonic crystals. Phys. Rev. Lett. 86, 5474–5477 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Christodoulides, D. N. & Efremidis, N. K. Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals. Opt. Lett. 27, 568–570 (2002)

    Article  ADS  Google Scholar 

  24. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419, 51–54 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Segev, M., Crosignani, B., DiPorto, P., Valley, G. C. & Yariv, A. Steady state spatial screening-solitons in photorefractive media with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994)

    Article  ADS  CAS  Google Scholar 

  27. Christodoulides, D. N. & Carvalho, M. I. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Shih, M., Segev, M. & Salamo, G. Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons. Opt. Lett. 21, 931–933 (1995)

    Article  ADS  Google Scholar 

  29. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, New Jersey, 1995)

    MATH  Google Scholar 

  30. Christodoulides, D. N. & Eugenieva, E. D. Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays. Phys. Rev. Lett. 87, 233901 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the MURI programme on optical solitons, and was also supported by the Israeli Science Foundation, and by the German–Israeli DIP project. J.W.F thanks the Lady Davis Foundation at the Technion for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Segev.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischer, J., Segev, M., Efremidis, N. et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003). https://doi.org/10.1038/nature01452

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01452

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing