Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum

Abstract

Widespread use of antimalarial agents can profoundly influence the evolution of the human malaria parasite Plasmodium falciparum. Recent selective sweeps for drug-resistant genotypes may have restricted the genetic diversity of this parasite, resembling effects attributed in current debates1,2,3,4 to a historic population bottleneck. Chloroquine-resistant (CQR) parasites were initially reported about 45 years ago from two foci in southeast Asia and South America5, but the number of CQR founder mutations and the impact of chlorquine on parasite genomes worldwide have been difficult to evaluate. Using 342 highly polymorphic microsatellite markers from a genetic map6, here we show that the level of genetic diversity varies substantially among different regions of the parasite genome, revealing extensive linkage disequilibrium surrounding the key CQR gene pfcrt7 and at least four CQR founder events. This disequilibrium and its decay rate in the pfcrt-flanking region are consistent with strong directional selective sweeps occurring over only 20–80 sexual generations, especially a single resistant pfcrt haplotype spreading to very high frequencies throughout most of Asia and Africa. The presence of linkage disequilibrium provides a basis for mapping genes under drug selection in P. falciparum.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide allele sharing analysis of P. falciparum isolates from various geographical regions or CQR/CQS (chloroquine-resistant/chloroquine sensitive) subsets.
Figure 2: Extensive linkage disequilibrium (LD), microsatellite (MS) haplotypes flanking pfcrt, and the rate of LD decline in CQR isolates.
Figure 3: Genome-wide scans for loci of reduced diversity and association of reduced diversity with the CQR phenotype.

Similar content being viewed by others

References

  1. Rich, S. M. & Ayala, F. J. The recent origin of allelic variation in antigenic determinants of Plasmodium falciparum. Genetics 150, 515–517 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Volkman, S. K. et al. Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001)

    Article  CAS  Google Scholar 

  3. Hughes, A. L. & Verra, F. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. Lond. B 268, 1855–1860 (2001)

    Article  CAS  Google Scholar 

  4. Hey, J. Parasite populations: the puzzle of Plasmodium. Curr. Biol. 9, R565–R567 (1999)

    Article  CAS  Google Scholar 

  5. Payne, D. Spread of chloroquine resistance in Plasmodium falciparum. Parasitol. Today 3, 241–246 (1987)

    Article  CAS  Google Scholar 

  6. Su, X. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999)

    Article  CAS  Google Scholar 

  7. Fidock, D. A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000)

    Article  CAS  Google Scholar 

  8. Anderson, T. J. et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17, 1467–1482 (2000)

    Article  CAS  Google Scholar 

  9. Escalante, A. A., Barrio, E. & Ayala, F. J. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 12, 616–626 (1995)

    CAS  PubMed  Google Scholar 

  10. Conway, D. J. et al. Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol. Biochem. Parasitol. 111, 163–171 (2000)

    Article  CAS  Google Scholar 

  11. Djimde, A. et al. A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344, 257–263 (2001)

    Article  CAS  Google Scholar 

  12. Dorsey, G., Kamya, M. R., Singh, A. & Rosenthal, P. J. Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr-1 genes and clinical response to chloroquine in Kampala, Uganda. J. Infect. Dis. 183, 1417–1420 (2001)

    Article  CAS  Google Scholar 

  13. Conway, D. J. et al. High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 4506–4511 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Hill, W. G., Babiker, H. A., Ranford-Cartwright, L. C. & Walliker, D. Estimation of inbreeding coefficients from genotypic data on multiple alleles, and application to estimation of clonality in malaria parasites. Genet. Res. 65, 53–61 (1995)

    Article  CAS  Google Scholar 

  15. Walliker, D., Babiker, H. & Ranford Cartwright, L. in Malaria: Parasite Biology, Pathogenesis, and Protection (ed. Sherman, I. W.) 235–252 (American Society for Microbiology, Washington DC, 1998)

    Google Scholar 

  16. Paul, R. E. et al. Mating patterns in malaria parasite populations of Papua New Guinea. Science 269, 1709–1711 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976)

    Article  ADS  CAS  Google Scholar 

  18. Su, X., Kirkman, L. A., Fujioka, H. & Wellems, T. E. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 91, 593–603 (1997)

    Article  CAS  Google Scholar 

  19. Dye, C. & Williams, B. G. Multigenic drug resistance among inbred malaria parasites. Proc. R. Soc. Lond. B 264, 61–67 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Nomura, T. et al. Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J. Infect. Dis. 183, 1653–1561 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank various investigators who provided the isolates over the years, S. Davis-Hayman, D. Joy, K. Hayton and B. Marshall for critical reading of the manuscript and editorial assistance, and T. Wellems, L. Miller and D. Lipman for support and encouragement. The opinions of the authors do not necessarily reflect those of the US army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-zhuan Su.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wootton, J., Feng, X., Ferdig, M. et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002). https://doi.org/10.1038/nature00813

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00813

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing