Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CO and H3+ in the protoplanetary disk around the star HD141569

Abstract

Massive planets have now been found orbiting about 80 stars. A long outstanding question critical to theories of planet formation has been the timescale on which gas-giant planets form; in particular, stars more massive than the Sun may blow away the surrounding gas associated with their formation more quickly than it can be accumulated by the protoplanetary cores1. Evidence for a protoplanet around a Herbig AeBe star (such stars are 2–3 times more massive than the Sun) would constrain the timescale of planet formation. Here we report the detection of CO and H3+ emission from the 5–10-million-year-old Herbig AeBe star HD141569. We interpret the CO data as indicating that the inner disk surrounding the star is past the early phase of accretion and planetesimal formation, and that most of the gas has been cleared out to a distance of more than 17 astronomical units. CO effectively destroys H3+ (ref. 2), so their presence in the same source is surprising. Moreover, H3+ line emission has previously been detected only from the atmospheres of the giant planets in the Solar System3,4. The H3+ and CO may therefore be distributed in the disk at different circumstellar distances, or, alternatively, H3+ may be located in the extended envelope of a protoplanet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CO spectra of HD141569.
Figure 2: Detections and non-detections of H3+ emission.
Figure 3: Speculative illustration showing the inner edge of the CO gas disk and a gas giant protoplanet slightly closer to the central star from which the H3+ may originate.

Similar content being viewed by others

References

  1. Natta, A., Grinin, V. & Mannings, V. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 559–588 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  2. Oka, T. A search for interstellar H3+. Phil. Trans. R. Soc. Lond. A 303, 543–549 (1981)

    Article  ADS  CAS  Google Scholar 

  3. Maillard, J. P., Drossart, P., Watson, J. K. G., Kim, S. J. & Caldwell, J. H3+ fundamental band in Jupiter's auroral zones at high resolution from 2400 to 2900 cm-1. Astrophys. J. 363, L37–L41 (1990)

    Article  ADS  CAS  Google Scholar 

  4. Drossart, P. et al. Detection of H3+ on Jupiter. Nature 340, 539–541 (1989)

    Article  ADS  CAS  Google Scholar 

  5. Fisher, R. S., Telesco, C. M., Piña, R. K., Knacke, R. F. & Wyatt, M. C. Detection of extended thermal infrared emission around the Vega-like source HD 141569. Astrophys. J. 532, L141–L144 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Weinberger, A. J. et al. The circumstellar disk of HD141569 imaged with NICMOS. Astrophys. J. 525, L53–L56 (1999)

    Article  ADS  CAS  Google Scholar 

  7. van den Ancker, M. E., de Winter, D. & Tjin A Djie, H. R. HIPPARCOS photometry of Herbig Ae/Be stars. Astron. Astrophys. 330, 145–154 (1998)

    ADS  Google Scholar 

  8. Zuckerman, B., Forveille, T. & Kastner, J. H. Inhibition of giant planet formation by rapid gas depletion around young stars. Nature 373, 494–496 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Malfait, K., Bogaert, E. & Waelkens, C. An ultraviolet, optical and infrared study of Herbig Ae/Be stars. Astron. Astrophys. 331, 211–223 (1998)

    ADS  Google Scholar 

  10. Weinberger, A. J., Rich, R. M., Becklin, E. E., Zuckerman, B. & Matthews, K. Stellar companions and the age of HD 141569 and its circumstellar disk. Astrophys. J. 544, 937–943 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Tokunaga, A. T., Toomey, D. W., Carr, J., Hall, D. N. B. & Epps, H. W. Proc. Instrumentation in Astronomy VII 131–143 (Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1990)

    Book  Google Scholar 

  12. Thi, W. F. et al. H2 and CO emission from disks around T Tauri and Herbig Ae pre-main-sequence stars and from debris disks around young stars: warm and cold circumstellar gas. Astrophys. J. 561, 1074–1094 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Ruden, S. P. & Pollack, J. B. The dynamical evolution of the protosolar nebula. Astrophys. J. 375, 740–760 (1991)

    Article  ADS  Google Scholar 

  14. Lissauer, J. J. Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993)

    Article  ADS  CAS  Google Scholar 

  15. Podolak, M., Hubbard, W. B. & Pollack, J. B. in Protostars and Planets III (ed. Levy, E. H.Lunine, J. I.) 1109–1147 (Univ. Arizona Press, Tucson, 1993)

    Google Scholar 

  16. Miller, S., Tennyson, J. & Joseph, R. D. Infrared emission of H3+ in the atmosphere of Jupiter in the 2.1 and 4.0 μm region. Astrophys. J. 360, L55–L58 (1990)

    Article  ADS  Google Scholar 

  17. Oka, T. & Geballe, T. R. Observations of the 4 μm fundamental band of H3+ in Jupiter. Astrophys. J. 351, L53–L56 (1990)

    Article  ADS  CAS  Google Scholar 

  18. Trafton, L. M., Geballe, T. R., Miller, S., Tennyson, J. & Ballester, G. E. Detection of H3+ from Uranus. Astrophys. J. 405, 761–766 (1993)

    Article  ADS  CAS  Google Scholar 

  19. McCall, B. J., Geballe, T. R., Hinkle, K. H. & Oka, T. Observations of H3+ in dense molecular clouds. Astrophys. J. 522, 338–348 (1999)

    Article  ADS  CAS  Google Scholar 

  20. McCall, B. J., Hinkle, K. H., Geballe, T. R. & Oka, T. H3+ in dense and diffuse clouds. Faraday Discuss. 109, 267–280 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Wuchterl, G., Gillot, T. & Lissauer, J. J. in Protostars and Planets IV (ed. Mannings, V.Boss, A. P.Russell, S. S.) 1081–1110 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  22. Boss, A. P. Planetary Systems in the Universe 202–205 (International Astronomical Union, IAU Symp. 202, Manchester, UK, 2000)

    Google Scholar 

  23. Boss, A. P. Formation of extrasolar giant planets: core accretion or disk instability? Earth Moon Planets 81, 19–26 (1998)

    Article  ADS  Google Scholar 

  24. Kunde, V. G. & Maguire, W. C. A Direct Integration Transmittance Model. J. Quant. Spectrosc. Radiat. Transfer 14, 803–817 (1974)

    Article  ADS  CAS  Google Scholar 

  25. Rothman, L. S. et al. The HITRAN molecular database: editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Dunkin, S. D., Barlow, M. J. & Ryan, S. G. High-resolution Spectroscopy of Vega-like Stars—I. Effective Temperatures, Gravities and Photospheric Abundances. Mon. Not. R. Astron. Soc. 286, 604–616 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Frisch, P. C. Radial velocities in selected B-G stars. Astrophys. J. Suppl. 65, 313–317 (1987)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

S.D.B. and T.W.R. were Visiting Astronomers at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract from the National Aeronautics and Space Administration (NASA). We thank N. Dello-Russo, M. DiSanti, C. Kulesa, K. Magee-Sauer and M. Mumma for discussions regarding the reduction and analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence W. Rettig.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brittain, S., Rettig, T. CO and H3+ in the protoplanetary disk around the star HD141569. Nature 418, 57–59 (2002). https://doi.org/10.1038/nature00800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00800

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing