Molecular Therapy
Volume 16, Issue 6, June 2008, Pages 1056-1064
Journal home page for Molecular Therapy

Original Article
Delivery of AAV-IGF-1 to the CNS Extends Survival in ALS Mice Through Modification of Aberrant Glial Cell Activity

https://doi.org/10.1038/mt.2008.60Get rights and content
Under a Creative Commons license
open archive

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. Recent work in rodent models of ALS has shown that insulin-like growth factor-1 (IGF-1) slows disease progression when delivered at disease onset. However, IGF-1's mechanism of action along the neuromuscular axis remains unclear. In this study, symptomatic ALS mice received IGF-1 through stereotaxic injection of an IGF-1-expressing viral vector to the deep cerebellar nuclei (DCN), a region of the cerebellum with extensive brain stem and spinal cord connections. We found that delivery of IGF-1 to the central nervous system (CNS) reduced ALS neuropathology, improved muscle strength, and significantly extended life span in ALS mice. To explore the mechanism of action of IGF-1, we used a newly developed in vitro model of ALS. We demonstrate that IGF-1 is potently neuroprotective and attenuates glial cell–mediated release of tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Our results show that delivering IGF-1 to the CNS is sufficient to delay disease progression in a mouse model of familial ALS and demonstrate for the first time that IGF-1 attenuates the pathological activity of non-neuronal cells that contribute to disease progression. Our findings highlight an innovative approach for delivering IGF-1 to the CNS.

Cited by (0)

published online 1 April 2008