Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cortisol stress reactivity: a meta-analysis

Abstract

Recent meta-analyses have stimulated an active debate on whether the serotonin transporter gene-linked polymorphic region (5-HTTLPR) is associated with an elevated vulnerability to psychiatric diseases upon exposure to environmental adversity. As a potential mechanism explaining genotype-dependent differences in stress sensitivity, altered stress-induced activation of the hypothalamus-pituitary-adrenal (HPA) axis has been investigated in several experimental studies, with most of these studies comprising small samples. We evaluated the association of 5-HTTLPR genotype and cortisol reactivity to acute psychosocial stress by applying a meta-analytical technique based on eleven relevant data sets (total N=1686), which were identified through a systematic literature search up to October 2011. This meta-analysis indicates a small (d=0.27), but significant association between 5-HTTLPR genotype and HPA-axis reactivity to acute psychosocial stress with homozygous carriers of the S allele displaying increased cortisol reactivity compared with individuals with the S/L and L/L genotype. The latter association was not further moderated by participants’ age, sex or the type of stressor. Formal testing revealed no evidence for a substantial selection or publication bias. Our meta-analytical results are consistent with a wide variety of experimental studies indicating a significant association between 5-HTTLPR genotype and intermediate phenotypes related to stress sensitivity. Future studies are needed to clarify the consistency of this effect and to further explore whether altered HPA-axis stress reactivity reflects a potential biological mechanism conveying an elevated risk for the development of stress-related disorders in S allele carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg BD, Tolliver TJ, Huang SJ, Li Q, Bengel D, Murphy DL . Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 1999; 88: 83–87.

    Article  CAS  PubMed  Google Scholar 

  3. Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  4. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA . Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 2004; 306: 879–881.

    Article  CAS  PubMed  Google Scholar 

  5. Murthy NV, Selvaraj S, Cowen PJ, Bhagwagar Z, Riedel WJ, Peers P et al. Serotonin transporter polymorphisms (SLC6A4 insertion/deletion and rs25531) do not affect the availability of 5-HTT to [11C] DASB binding in the living human brain. Neuroimage 2010; 52: 50–54.

    Article  CAS  PubMed  Google Scholar 

  6. Uher R, McGuffin P . The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry 2008; 13: 131–146.

    Article  CAS  PubMed  Google Scholar 

  7. Uher R, McGuffin P . The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Mol Psychiatry 2010; 15: 18–22.

    Article  CAS  PubMed  Google Scholar 

  8. Karg K, Burmeister M, Shedden K, Sen S . The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 2011; 68: 444–454.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Munafò MR, Durrant C, Lewis G, Flint J . Gene X environment interactions at the serotonin transporter locus. Biol Psychiatry 2009; 65: 211–219.

    Article  PubMed  Google Scholar 

  10. Risch N, Herrell R, Lehner T, Liang K-Y, Eaves L, Hoh J et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 2009; 301: 2462–2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE . Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010; 167: 509–527.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flint J, Munafò MR . The endophenotype concept in psychiatric genetics. Psychol Med 2007; 37: 163–180.

    Article  PubMed  Google Scholar 

  13. Hasler G, Drevets WC, Manji HK, Charney DS . Discovering endophenotypes for major depression. Neuropsychopharmacology 2004; 29: 1765–1781.

    CAS  PubMed  Google Scholar 

  14. Dougherty LR, Klein DN, Congdon E, Canli T, Hayden EP . Interaction between 5-HTTLPR and BDNF Val66Met polymorphisms on HPA axis reactivity in preschoolers. Biol Psychol 2010; 83: 93–100.

    Article  PubMed  Google Scholar 

  15. Gotlib IH, Joormann J, Minor KL, Hallmayer J . HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry 2008; 63: 847–851.

    Article  CAS  PubMed  Google Scholar 

  16. Way BM, Taylor SE . The serotonin transporter promoter polymorphism is associated with cortisol response to psychosocial stress. Biol Psychiatry 2010; 67: 487–492.

    Article  CAS  PubMed  Google Scholar 

  17. Alexander N, Kuepper Y, Schmitz A, Osinsky R, Kozyra E, Hennig J . Gene-environment interactions predict cortisol responses after acute stress: implications for the etiology of depression. Psychoneuroendocrinology 2009; 34: 1294–1303.

    Article  CAS  PubMed  Google Scholar 

  18. Bouma EMC, Riese H, Nederhof E, Ormel J, Oldehinkel AJ . No replication of genotype effect of 5-HTTLPR on cortisol response to social stress in larger adolescent sample. Biol Psychiatry 2010; 68: e33–e34.

    Article  CAS  PubMed  Google Scholar 

  19. Shalev I . No association between cortisol stress response and serotonin transporter polymorphism. Unpublished raw data 2009.

  20. Verschoor E, Markus CR . Effects of acute psychosocial stress exposure on endocrine and affective reactivity in college students differing in the 5-HTTLPR genotype and trait neuroticism. Stress 2011; 14: 407–419.

    Article  CAS  PubMed  Google Scholar 

  21. Wüst S, Kumsta R, Treutlein J, Frank J, Entringer S, Schulze TG et al. Sex-specific association between the 5-HTT gene-linked polymorphic region and basal cortisol secretion. Psychoneuroendocrinology 2009; 34: 972–982.

    Article  PubMed  Google Scholar 

  22. Mueller A, Armbruster D, Moser DA, Canli T, Lesch K-P, Brocke B et al. Interaction of serotonin transporter gene-linked polymorphic region and stressful life events predicts cortisol stress response. Neuropsychopharmacology 2011; 36: 1332–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fuller RW . Serotonin receptors and neuroendocrine responses. Neuropsychopharmacology 1990; 3: 495–502.

    CAS  PubMed  Google Scholar 

  24. Porter RJ, Gallagher P, Watson S, Young AH . Corticosteroid-serotonin interactions in depression: a review of the human evidence. Psychopharmacology 2004; 173: 1–17.

    Article  CAS  PubMed  Google Scholar 

  25. Munafò MR, Flint J . Meta-analysis of genetic association studies. Trends Genet 2004; 20: 439–444.

    Article  PubMed  Google Scholar 

  26. Umeda T, Hiramatsu R, Iwaoka T, Shimada T, Miura F, Sato T . Use of saliva for monitoring unbound free cortisol levels in serum. Clin Chim Acta 1981; 110: 245–253.

    Article  CAS  PubMed  Google Scholar 

  27. Ekins R . Measurement of free hormones in blood. Endocr Rev 1990; 11: 5–46.

    Article  CAS  PubMed  Google Scholar 

  28. Mueller A, Brocke B, Fries E, Lesch K-P, Kirschbaum C . The role of the serotonin transporter polymorphism for the endocrine stress response in newborns. Psychoneuroendocrinology 2010; 35: 289–296.

    Article  CAS  PubMed  Google Scholar 

  29. Verschoor E, Markus CR . Affective and neuroendocrine stress reactivity to an academic examination: influence of the 5-HTTLPR genotype and trait neuroticism. Biol Psychol 2011; 87: 439–449.

    Article  PubMed  Google Scholar 

  30. Frigerio A, Ceppi E, Rusconi M, Giorda R, Raggi ME, Fearon P . The role played by the interaction between genetic factors and attachment in the stress response in infancy. J Child Psychol Psychiatry 2009; 50: 1513–1522.

    Article  PubMed  Google Scholar 

  31. Armbruster D, Mueller A, Moser DA, Lesch K-P, Brocke B, Kirschbaum C . Interaction effect of D4 dopamine receptor gene and serotonin transporter promoter polymorphism on the cortisol stress response. Behav Neurosci 2009; 123: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  32. Jabbi M, Korf J, Kema IP, Hartman C, van der Pompe G, Minderaa RB et al. Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA. Mol Psychiatry 2007; 12: 483–490.

    Article  CAS  PubMed  Google Scholar 

  33. Wilcox RR, Keselman HJ . Modern robust data analysis methods: measures of central tendency. Psychol Methods 2003; 8: 254–274.

    Article  PubMed  Google Scholar 

  34. Viechtbauer W . Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 2010; 36: 1–48.

    Article  Google Scholar 

  35. R Core Development Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria 2012 Available from:http://www.r-project.org.

  36. Mier D, Kirsch P, Meyer-Lindenberg A . Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 2010; 15: 918–927.

    Article  CAS  PubMed  Google Scholar 

  37. Cohn LD, Becker BJ . How meta-analysis increases statistical power. Psychol Methods 2003; 8: 243–253.

    Article  PubMed  Google Scholar 

  38. Becker BJ . Synthesizing standardized mean-change measures. Br J Math Stat Psychol 1988; 41: 257–278.

    Article  Google Scholar 

  39. Morris SB, DeShon RP . Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods 2002; 7: 105–125.

    Article  PubMed  Google Scholar 

  40. Hedges LV, Olkin I . Statistical Methods for Meta-Analysis. Academic Press: Orlando, FL, 1985.

    Google Scholar 

  41. Dickerson SS, Kemeny ME . Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 2004; 130: 355–391.

    Article  PubMed  Google Scholar 

  42. Kudielka BM, Kirschbaum C . Sex differences in HPA axis responses to stress: a review. Biol Psychol 2005; 69: 113–132.

    Article  PubMed  Google Scholar 

  43. Otte C, Hart S, Neylan TC, Marmar CR, Yaffe K, Mohr DC . A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology 2005; 30: 80–91.

    Article  CAS  PubMed  Google Scholar 

  44. Knapp G, Hartung J . Improved tests for a random effects meta-regression with a single covariate. Stat Med 2003; 22: 2693–2710.

    Article  PubMed  Google Scholar 

  45. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L . Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol 2008; 61: 991–996.

    Article  PubMed  Google Scholar 

  46. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duval S, Tweedie R . A nonparametric’ trim and fill’ method of accounting for publication bias in meta-analysis. JASA 2000; 95: 89–98.

    Google Scholar 

  48. Duval S, Tweedie R . Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455–463.

    Article  CAS  PubMed  Google Scholar 

  49. Li Q, Wichems C, Heils A, Van de Kar LD, Lesch KP, Murphy DL . Reduction of 5-hydroxytryptamine (5-HT)1A-mediated temperature and neuroendocrine responses and 5-HT1A binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 1999; 291: 999–1007.

    CAS  PubMed  Google Scholar 

  50. Tjurmina OA, Armando I, Saavedra JM, Goldstein DS, Murphy DL . Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 2002; 143: 4520–4526.

    Article  CAS  PubMed  Google Scholar 

  51. Homberg JR, Lesch K-P . Looking on the bright side of serotonin transporter gene variation. Biol Psychiatry 2011; 69: 513–519.

    Article  CAS  PubMed  Google Scholar 

  52. Federenko IS, Nagamine M, Hellhammer DH, Wadhwa PD, Wüst S . The heritability of hypothalamus pituitary adrenal axis responses to psychosocial stress is context dependent. J Clin Endocrinol Metab 2004; 89: 6244–6250.

    Article  CAS  PubMed  Google Scholar 

  53. Kirschbaum C, Wüst S, Faig HG, Hellhammer DH . Heritability of cortisol responses to human corticotropin-releasing hormone, ergometry, and psychological stress in humans. J Clin Endocrinol Metab 1992; 75: 1526–1530.

    CAS  PubMed  Google Scholar 

  54. Cohen S, Hamrick N, Rodriguez MS, Feldman PJ, Rabin BS, Manuck SB . The stability of and intercorrelations among cardiovascular, immune, endocrine, and psychological reactivity. Ann Behav Med 2000; 22: 171–179.

    Article  CAS  PubMed  Google Scholar 

  55. Holsboer F . Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 2001; 62: 77–91.

    Article  CAS  PubMed  Google Scholar 

  56. Plotsky PM, Owens MJ, Nemeroff CB . Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 1998; 21: 293–307.

    Article  CAS  PubMed  Google Scholar 

  57. Lopez-Duran NL, Kovacs M, George CJ . Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: a meta-analysis. Psychoneuroendocrinology 2009; 34: 1272–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holsboer F, Lauer CJ, Schreiber W, Krieg JC . Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology 1995; 62: 340–347.

    Article  CAS  PubMed  Google Scholar 

  59. Chrousos GP . Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5: 374–381.

    Article  CAS  PubMed  Google Scholar 

  60. McEwen BS . Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007; 87: 873–904.

    Article  PubMed  Google Scholar 

  61. Murphy DL, Lesch K-P . Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 2008; 9: 85–96.

    Article  CAS  PubMed  Google Scholar 

  62. Weaver ICG, D'Alessio AC, Brown SE, Hellstrom IC, Dymov S, Sharma S et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci 2007; 27: 1756–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meaney MJ . Epigenetics and the biological definition of gene x environment interactions. Child Dev 2010; 81: 41–79.

    Article  PubMed  Google Scholar 

  64. Parsey RV, Hastings RS, Oquendo MA, Hu X, Goldman D, Huang Y-Y et al. Effect of a triallelic functional polymorphism of the serotonin-transporter-linked promoter region on expression of serotonin transporter in the human brain. Am J Psychiatry 2006; 163: 48–51.

    Article  PubMed  Google Scholar 

  65. Kalbitzer J, Erritzoe D, Holst KK, Nielsen FA, Marner L, Lehel S et al. Seasonal changes in brain serotonin transporter binding in short serotonin transporter linked polymorphic region-allele carriers but not in long-allele homozygotes. Biol Psychiatry 2010; 67: 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  66. Munafò MR, Brown SM, Hariri AR . Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry 2008; 63: 852–857.

    Article  PubMed  Google Scholar 

  67. Murphy SE, Norbury R, Godlewska BR, Cowen PJ, Mannie ZM, Harmer CJ et al. The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry 2012 doi:10.1038/mp.2012.19.

    Article  PubMed  Google Scholar 

  68. Ren-Patterson RF, Cochran LW, Holmes A, Sherrill S, Huang S-J, Tolliver T et al. Loss of brain-derived neurotrophic factor gene allele exacerbates brain monoamine deficiencies and increases stress abnormalities of serotonin transporter knockout mice. J Neurosci Res 2005; 79: 756–771.

    Article  CAS  PubMed  Google Scholar 

  69. Barr CS, Newman TK, Shannon C, Parker C, Dvoskin RL, Becker ML et al. Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biol Psychiatry 2004; 55: 733–738.

    Article  CAS  PubMed  Google Scholar 

  70. Clarke H, Flint J, Attwood AS, Munafò MR . Association of the 5- HTTLPR genotype and unipolar depression: a meta-analysis. Psychol Med 2010; 40: 1767–1778.

    Article  CAS  PubMed  Google Scholar 

  71. Hu X-Z, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 2006; 78: 815–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. DeRijk RH . Single nucleotide polymorphisms related to HPA axis reactivity. Neuroimmunomodulation 2009; 16: 340–352.

    Article  CAS  PubMed  Google Scholar 

  73. McCormack K, Newman TK, Higley JD, Maestripieri D, Sanchez MM . Serotonin transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque mothers and infants. Horm Behav 2009; 55: 538–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bouma EMC, Riese H, Nolte IM, Oosterom E, Verhulst FC, Ormel J et al. No associations between single nucleotide polymorphisms in corticoid receptor genes and heart rate and cortisol responses to a standardized social stress test in adolescents: the TRAILS study. Behav Genet 2011; 41: 253–261.

    Article  PubMed  Google Scholar 

  75. Shalev I, Lerer E, Israel S, Uzefovsky F, Gritsenko I, Mankuta D et al. BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions. Psychoneuroendocrinology 2009; 34: 382–388.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the generosity and courtesy of our colleagues who provided the requested data for the present meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Alexander.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R., Wankerl, M., Stalder, T. et al. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and cortisol stress reactivity: a meta-analysis. Mol Psychiatry 18, 1018–1024 (2013). https://doi.org/10.1038/mp.2012.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.124

Keywords

This article is cited by

Search

Quick links