Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses

Abstract

In this article, we review some of the data that contribute to our understanding of the genetic architecture of psychiatric disorders. These include results from evolutionary modelling (hence no data), the observed recurrence risk to relatives and data from molecular markers. We briefly discuss the common-disease common-variant hypothesis, the success (or otherwise) of genome-wide association studies, the evidence for polygenic variance and the likely success of exome and whole-genome sequencing studies. We conclude that the perceived dichotomy between ‘common’ and ‘rare’ variants is not only false, but unhelpful in making progress towards increasing our understanding of the genetic basis of psychiatric disorders. Strong evidence has been accumulated that is consistent with the contribution of many genes to risk of disease, across a wide range of allele frequencies and with a substantial proportion of genetic variation in the population in linkage disequilibrium with single-nucleotide polymorphisms (SNPs) on commercial genotyping arrays. At the same time, most causal variants that segregate in the population are likely to be rare and in total these variants also explain a significant proportion of genetic variation. It is the combination of allele frequency, effect size and functional characteristics that will determine the success of new experimental paradigms such as whole exome/genome sequencing to detect such loci. Empirical results suggest that roughly half the genetic variance is tagged by SNPs on commercial genome-wide chips, but that individual causal variants have a small effect size, on average. We conclude that larger experimental sample sizes are essential to further our understanding of the biology underlying psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. McGrath JJ . The surprisingly rich contours of schizophrenia epidemiology. Arch Gen Psychiatry 2007; 64: 14–16.

    Article  PubMed  Google Scholar 

  2. Gottesman II, Shields J . A polygenic theory of schizophrenia. Proc Natl Acad Sci USA 1967; 58: 199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McGue M, Gottesman II, Rao DC . Resolving genetic models for the transmission of schizophrenia. Genet Epidemiol 1985; 2: 99–110.

    Article  CAS  PubMed  Google Scholar 

  4. Wray NR, Visscher PM . Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr Bull 2010; 36: 14–23.

    Article  PubMed  Google Scholar 

  5. Yang J, Visscher PM, Wray NR . Sporadic cases are the norm for complex disease. Eur J Hum Genet 2010; 18: 1039–1043.

    Article  PubMed  Google Scholar 

  6. Smith C . Heritability of liability and concordance in monozygous twins. Ann Hum Genet 1970; 34: 85–91.

    Article  CAS  PubMed  Google Scholar 

  7. Slatkin M . Exchangeable models of complex inherited diseases. Genetics 2008; 179: 2253–2261.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wray NR, Goddard ME . Multi-locus models of genetic risk of disease. Genome Med 2010; 2: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dempster ER, Lerner IM . Heritability of threshold characters. Genetics 1950; 35: 212–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wray NR, Visscher PM . Narrowing the boundaries of the genetic architecture of schizophrenia. Schizophr Bull 2010; 36: 14–23.

    Article  PubMed  Google Scholar 

  11. Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M . The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 1998; 55: 67–74.

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait—evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  13. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  PubMed  Google Scholar 

  14. Weissman MM, Wickramaratne P, Merikangas KR, Leckman JF, Prusoff BA, Caruso KA et al. Onset of major depression in early adulthood—increased familial loading and specificity. Arch Gen Psychiatry 1984; 41: 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  15. McGuffin P, Katz R, Watkins S, Rutherford J . A hospital-based twin register of the heritability of DSM-IV unipolar depression. Arch Gen Psychiatry 1996; 53: 129–136.

    Article  CAS  PubMed  Google Scholar 

  16. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . The lifetime history of major depression in women—reliability of diagnosis and heritability. Arch Gen Psychiatry 1993; 50: 863–870.

    Article  CAS  PubMed  Google Scholar 

  17. Foley DL, Neale MC, Kendler KS . Reliability of a lifetime history of major depression: implications for heritability and co-morbidity. Psychol Med 1998; 28: 857–870.

    Article  CAS  PubMed  Google Scholar 

  18. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  19. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  20. Lynch M, Walsh B . Genetics and Analysis of Quantitative Traits, 1st edn. Sinauer Associates: Sunderland, MA, 1998.

    Google Scholar 

  21. Falconer DS, Mackay TFC . Introduction to Quantitative Genetics, 4th edn. Longman: Harlow, Essex, UK, 1996.

    Google Scholar 

  22. Zhang XS, Hill WG . Multivariate stabilizing selection and pleiotropy in the maintenance of quantitative genetic variation. Evolution 2003; 57: 1761–1775.

    Article  PubMed  Google Scholar 

  23. Laursen TM, Munk-Olsen T . Reproductive patterns in psychotic patients. Schizophr Res 2010; 121: 234–240.

    Article  CAS  PubMed  Google Scholar 

  24. Uher R . The role of genetic variation in the causation of mental illness: an evolution-informed framework. Mol Psychiatry 2009; 14: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  25. Kimura M . Evolutionary rate at the molecular level. Nature 1968; 217: 624–626.

    Article  CAS  PubMed  Google Scholar 

  26. Fu YX . Statistical properties of segregating sites. Theor Popul Biol 1995; 48: 172–197.

    Article  CAS  PubMed  Google Scholar 

  27. Eyre-Walker A . Genetic architecture of complex traits and its implications for fitness and genome-wide association studies. Proc Natl Acad Sci USA 2010; 107: 1752–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McClellan JM, Susser E, King MC . Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190: 194–199.

    Article  PubMed  Google Scholar 

  29. Craddock N, O'Donovan MC, Owen MJ . Phenotypic and genetic complexity of psychosis—invited commentary on schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190: 200–203.

    Article  PubMed  Google Scholar 

  30. Lander ES . The new genomics: global views of biology. Science 1996; 274: 536–539.

    Article  CAS  PubMed  Google Scholar 

  31. Reich DE, Lander ES . On the allelic spectrum of human disease. Trends Genet 2001; 17: 502–510.

    Article  CAS  PubMed  Google Scholar 

  32. O'Donovan MC, Craddock NJ, Owen MJ . Genetics of psychosis; insights from views across the genome. Hum Genet 2009; 126: 3–12.

    Article  CAS  PubMed  Google Scholar 

  33. Kirov G . The role of copy number variation in schizophrenia. Expert Rev Neurother 2010; 10: 25–32.

    Article  CAS  PubMed  Google Scholar 

  34. Wray NR, Purcell S, Visscher PM . Synthetic assocations created by rare variants do not explain most GWAS results. PLoS Biol 2011; 9: e1000579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassett AS, Marshall CR, Lionel AC, Chow EWC, Scherer SW . Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 2008; 17: 4045–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaikh TH, Kurahashi H, Saitta SC, O'Hare AM, Hu P, Roe BA et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 2000; 9: 489–501.

    Article  CAS  PubMed  Google Scholar 

  37. Purcell S, Cherny SS, Sham PC . Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  PubMed  Google Scholar 

  38. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goddard ME, Wray NR, Verbyla K, Visscher PM . Estimating effects and making predictions from genome-wide marker data. Statist Sci 2009; 24: 517–529.

    Article  Google Scholar 

  41. Visscher PM, Yang J, Goddard ME . A commentary on ‘Common SNPs Explain a Large Proportion of the Heritability for Human Height’ by Yang et al. (2010). Twin Res Hum Genet 2010; 13: 517–524.

    Article  PubMed  Google Scholar 

  42. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467: 832–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu B, Roos JL, Levy S, Van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  46. Stone JL, O'Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  47. Stefansson H, Rujescu D, Cichon S, Pietilainen OPH, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–U261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Wray NR, Visscher PM . Comparing apples and oranges: equating the power of case-control and quantitative trait association studies. Genet Epidemiol 2010; 34: 254–257.

    Article  PubMed  Google Scholar 

  49. Haque FN, Gottesman II, Wong AH . Not really identical: epigenetic differences in monozygotic twins and implications for twin studies in psychiatry. Am J Med Genet C 2009; 151C: 136–141.

    Article  CAS  Google Scholar 

  50. Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y . Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 2005; 10: 622–630.

    Article  CAS  PubMed  Google Scholar 

  51. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  52. Lee SH, Wray NR, Goddard ME, Visscher PM . Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 2011; 88: 294–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wray NR, Goddard ME, Visscher PM . Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 2007; 17: 1520–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muglia P, Tozzi F, Galwey NW, Francks C, Upmanyu R, Kong XQ et al. Genome-wide association study of recurrent major depressive disorder in two European case–control cohorts. Mol Psychiatr 2008; 15: 589–601.

    Article  CAS  Google Scholar 

  55. Sullivan PF, de Geus EJC, Willemsen G, James MR, Smit JH, Zandbelt T et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatr 2009; 14: 359–375.

    Article  CAS  Google Scholar 

  56. Shi J, Potash JB, Knowles JA, Weissman MM, Coryell W, Scheftner WA et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol Psychiatr 2010; 16: 193–201.

    Article  CAS  Google Scholar 

  57. Shyn SI, Shi J, Kraft JB, Potash JB, Knowles JA, Weissman MM et al. Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol Psychiatr 2009; 16: 202–215.

    Article  Google Scholar 

  58. Lewis CM, Ng MY, Bulter AW, Cohen-Woods S, Uher R, Pirlo K et al. Genome-wide association study of major depression in the UK population. Am J Psychiatry 2010; 167: 949–957.

    Article  PubMed  Google Scholar 

  59. Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 2010; Molecular Psychiatry; advance online publication, 2 November 2010; doi:10.1038/mp.2010.109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rietschel M, Mattheisen M, Frank J, Treutlein J, Degenhardt F, Breuer R et al. Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. Biol Psychiatry 2010; 68: 578–585.

    Article  CAS  PubMed  Google Scholar 

  61. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al. Genome-widse association study identifies novel breast cancer susceptibility loci. Nature 2007; 447: 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitchell KJ, Porteous DJ . Rethinking the genetic architecture of schizophrenia. Psychol Med 2011; 41: 19–32.

    Article  CAS  PubMed  Google Scholar 

  63. Byrnes GB, Southey MC, Hopper JL . Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories? Breast Cancer Res 2008; 10: 208.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Korszun A, Moskvina V, Brewster S, Craddock N, Ferrero F, Gill M et al. Familiality of symptom dimensions in depression. Arch Gen Psychiatry 2004; 61: 468–474.

    Article  PubMed  Google Scholar 

  65. Pope HG, Yurgeluntodd D . Schizophrenic individuals with bipolar 1st-degree relatives—analysis of 2 pedigrees. J Clin Psychiatry 1990; 51: 97–101.

    PubMed  Google Scholar 

  66. Blackwood DHR, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: Clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gottesman II, Laursen TM, Bertelsen A, Mortensen PB . Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry 2010; 67: 252–257.

    Article  PubMed  Google Scholar 

  68. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009; 14: 252–260.

    Article  CAS  PubMed  Google Scholar 

  69. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatr 2010; 15: 1016–1022.

    Article  CAS  Google Scholar 

  70. Craddock N, Owen MJ . The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatry 2005; 186: 364–366.

    Article  PubMed  Google Scholar 

  71. Craddock N, Owen MJ . Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry 2007; 6: 20–27.

    Google Scholar 

  72. Craddock N, Jones L, Jones IR, Kirov G, Green EK, Grozeva D et al. Strong genetic evidence for a selective influence of GABA(A) receptors on a component of the bipolar disorder phenotype. Mol Psychiatr 2010; 15: 146–153.

    Article  CAS  Google Scholar 

  73. Falconer DS . The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet 1965; 29: 51–71.

    Article  Google Scholar 

  74. Reich T, James JW, Morris CA . The use of multiple thresholds in determining the mode of transmission of semi-continuous traits. Ann Hum Genet 1972; 36: 163–184.

    Article  CAS  PubMed  Google Scholar 

  75. Hill WG, Goddard ME, Visscher PM . Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 2008; 4: e1000008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  77. Shi JX, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–U799.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. Plos Genetics 2008; 4: e28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kirov G, Rujescu D, Ingason A, Collier DA, O'Donovan MC, Owen MJ . Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull 2009; 35: 851–854.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  82. A Catalog of Published Genome-Wide Association Studies. Available at:www.genome.gov/gwastudies/(accessed on 13 December 2010).

  83. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci USA 2009; 106: 7501–7506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ferreira MA, O′Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  86. WTCCC. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Australian National Health and Medical Research Council (Grants 389892, 442915, 496688, 613672 and 613601) and the Australian Research Council (Grants DP0770096 and DP1093900 and Future Fellowship to NRW). We thank Adam Eyre-Walker for discussions and correspondence regarding computing Zeta functions, and Bill Hill for helpful comments. We dedicate this paper to the memory of Charlie Smith and Douglas Falconer, who had it all worked out 40 years ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Visscher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visscher, P., Goddard, M., Derks, E. et al. Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry 17, 474–485 (2012). https://doi.org/10.1038/mp.2011.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.65

Keywords

This article is cited by

Search

Quick links