Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice

Subjects

Abstract

Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Perez-Andres M, Almeida J, Martin-Ayuso M, Moro MJ, Martin-Nunez G, Galende J et al. Characterization of bone marrow T cells in monoclonal gammopathy of undetermined significance, multiple myeloma, and plasma cell leukemia demonstrates increased infiltration by cytotoxic/Th1 T cells demonstrating a squed TCR-Vbeta repertoire. Cancer 2006; 106: 1296–1305.

    Article  CAS  Google Scholar 

  2. Bianchi G, Munshi NC . Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015; 125: 3049–3058.

    Article  CAS  Google Scholar 

  3. Dunn GP, Old LJ, Schreiber RD . The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137–148.

    Article  CAS  Google Scholar 

  4. Zitvogel L, Tesniere A, Kroemer G . Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6: 715–727.

    Article  CAS  Google Scholar 

  5. Haabeth OA, Lorvik KB, Hammarstrom C, Donaldson IM, Haraldsen G, Bogen B et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun 2011; 2: 240.

    Article  Google Scholar 

  6. Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol 2014 2014; 5: 174.

    Article  Google Scholar 

  7. Tveita AA, Schjesvold F, Haabeth OA, Fauskanger M, Bogen B . Tumors escape CD4+ T-cell-mediated immunosurveillance by impairing the ability of infiltrating macrophages to indirectly present tumor antigens. Cancer Res 2015; 75: 3268–3278.

    Article  CAS  Google Scholar 

  8. Leone P, Berardi S, Frassanito MA, Ria R, De ReV, Cicco S et al. Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T cell killing. Blood 2015; 126: 1443–1451.

    Article  CAS  Google Scholar 

  9. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P . The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10: 554–567.

    Article  CAS  Google Scholar 

  10. Ruffell B, DeNardo DG, Affara NI, Coussens LM . Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 2010; 21: 3–10.

    Article  CAS  Google Scholar 

  11. Zangani MM, Froyland M, Qiu GY, Meza-Zepeda LA, Kutok JL, Thompson KM et al. Lymphomas can develop from B cells chronically helped by idiotype-specific T cells. J Exp Med 2007; 204: 1181–1191.

    Article  CAS  Google Scholar 

  12. Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep 2013; 4: 566–577.

    Article  CAS  Google Scholar 

  13. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    Article  Google Scholar 

  14. Wein F, Kuppers R . The role of T cells in the microenvironment of Hodgkin lymphoma. J Leukoc Biol 2016; 99: 45–50.

    Article  CAS  Google Scholar 

  15. Ostad M, Andersson M, Gruber A, Sundblad A . Expansion of immunoglobulin autoreactive T-helper cells in multiple myeloma. Blood 2008; 111: 2725–2732.

    Article  CAS  Google Scholar 

  16. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 2010; 115: 5385–5392.

    Article  CAS  Google Scholar 

  17. Tokoyoda K, Hauser AE, Nakayama T, Radbruch A . Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 2010; 10: 193–200.

    Article  CAS  Google Scholar 

  18. Herndler-Brandstetter D, Landgraf K, Jenewein B, Tzankov A, Brunauer R, Brunner S et al. Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J Immunol 2011; 186: 6965–6971.

    Article  CAS  Google Scholar 

  19. Meers S, Kasran A, Boon L, Lemmens J, Ravoet C, Boogaerts M et al. Monocytes are activated in patients with myelodysplastic syndromes and can contribute to bone marrow failure through CD40-CD40L interactions with T helper cells. Leukemia 2007; 21: 2411–2419.

    Article  CAS  Google Scholar 

  20. Lesley R, Kelly LM, Xu Y, Cyster JG . Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc Natl Acad Sci USA 2006; 103: 10717–10722.

    Article  CAS  Google Scholar 

  21. Ford GS, Barnhart B, Shone S, Covey LR . Regulation of CD154 (CD40 ligand) mRNA stability during T cell activation. J Immunol 1999; 162: 4037–4044.

    CAS  PubMed  Google Scholar 

  22. Monteiro JP, Benjamin A, Costa ES, Barcinski MA, Bonomo A . Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells. Blood 2005; 105: 1484–1491.

    Article  CAS  Google Scholar 

  23. Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 2005; 65: 5898–5906.

    Article  CAS  Google Scholar 

  24. Tai YT, Podar K, Mitsiades N, Lin B, Mitsiades C, Gupta D et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003; 101: 2762–2769.

    Article  CAS  Google Scholar 

  25. Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC . CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 1995; 85: 1903–1912.

    CAS  PubMed  Google Scholar 

  26. Yi Q, Dabadghao S, Osterborg A, Bergenbrant S, Holm G . Myeloma bone marrow plasma cells: evidence for their capacity as antigen-presenting cells. Blood 1997; 90: 1960–1967.

    CAS  PubMed  Google Scholar 

  27. Walz S, Stickel JS, Kowalewski DJ, Schuster H, Weisel K, Backert L et al. The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood 2015; 126: 1203–1213.

    Article  CAS  Google Scholar 

  28. Harada H, Kawano MM, Huang N, Harada Y, Iwato K, Tanabe O et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 1993; 81: 2658–2663.

    CAS  PubMed  Google Scholar 

  29. Garrone P, Neidhardt EM, Garcia E, Galibert L, van KC, Banchereau J . Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 1995; 182: 1265–1273.

    Article  CAS  Google Scholar 

  30. Duhen T, Campbell DJ . IL-1beta promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes. J Immunol 2014; 193: 120–129.

    Article  CAS  Google Scholar 

  31. Becattini S, Latorre D, Mele F, Foglierini M, De Gregorio C, Cassotta A et al. T cell immunity. Functional heterogeneity of human memory CD4(+) T cell clones primed by pathogens or vaccines. Science 2015; 347: 400–406.

    Article  CAS  Google Scholar 

  32. Buckle CH, De Leenheer E, Lawson MA, Yong K, Rabin N, Perry M et al. Soluble rank ligand produced by myeloma cells causes generalised bone loss in multiple myeloma. PLoS ONE 2012; 7: e41127.

    Article  CAS  Google Scholar 

  33. Schmiedel BJ, Scheible CA, Nuebling T, Kopp HG, Wirths S, Azuma M et al. RANKL expression, function, and therapeutic targeting in multiple myeloma and chronic lymphocytic leukemia. Cancer Res 2013; 73: 683–694.

    Article  CAS  Google Scholar 

  34. Herndler-Brandstetter D, Landgraf K, Tzankov A, Jenewein B, Brunauer R, Laschober GT et al. The impact of aging on memory T cell phenotype and function in the human bone marrow. J Leukoc Biol 2012; 91: 197–205.

    Article  Google Scholar 

  35. Moss P, Gillespie G, Frodsham P, Bell J, Reyburn H . Clonal populations of CD4+ and CD8+ T cells in patients with multiple myeloma and paraproteinemia. Blood 1996; 87: 3297–3306.

    CAS  PubMed  Google Scholar 

  36. Kim D, Park CY, Medeiros BC, Weissman IL . CD19-CD45 low/- CD38 high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. Leukemia 2012; 26: 2530–2537.

    Article  CAS  Google Scholar 

  37. Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grun JR, Lohning M et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 2009; 30: 721–730.

    Article  CAS  Google Scholar 

  38. Zingone A, Wang W, Corrigan-Cummins M, Wu SP, Plyler R, Korde N et al. Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine 2014; 69: 294–297.

    Article  CAS  Google Scholar 

  39. Ehrlich LA, Roodman GD . The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev 2005; 208: 252–266.

    Article  CAS  Google Scholar 

  40. Andrews SW, Kabrah S, May JE, Donaldson C, Morse HR . Multiple myeloma: the bone marrow microenvironment and its relation to treatment. Br J Biomed Sci 2013; 70: 110–120.

    Article  CAS  Google Scholar 

  41. Sallusto F, Lanzavecchia A . Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 2009; 39: 2076–2082.

    Article  CAS  Google Scholar 

  42. Trentin L, Miorin M, Facco M, Baesso I, Carraro S, Cabrelle A et al. Multiple myeloma plasma cells show different chemokine receptor profiles at sites of disease activity. Br J Haematol 2007; 138: 594–602.

    Article  CAS  Google Scholar 

  43. Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G . Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003; 17: 203–210.

    Article  CAS  Google Scholar 

  44. Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ . TRAF proteins in CD40 signaling. Adv Exp Med Biol 2007; 597: 131–151.

    Article  Google Scholar 

  45. Teoh G, Tai YT, Urashima M, Shirahama S, Matsuzaki M, Chauhan D et al. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 2000; 95: 1039–1046.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Norwegian South-East Health region to LAM, the Research Council of Norway through its Centres of Excellence funding scheme (Project Number 179573/V40) to LAM, the Torsteds fund, the Raagholt fund and Unifor to DW.

Author contributions

DW, YF, CM, POH, SB, AP-R, AT and LAM performed experiments. JD, YF, FS and GET provided patient samples and clinical information. DW, YF, CM, SB, AP-R, POH, BB, AT and LAM analyzed data. All co-authors contributed to data interpretation, manuscript preparation. DW and LAM designed the research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Wang, A Tveita or L A Munthe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Fløisand, Y., Myklebust, C. et al. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice. Leukemia 31, 2114–2121 (2017). https://doi.org/10.1038/leu.2017.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.69

This article is cited by

Search

Quick links