Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human memory B cells

Subjects

Abstract

A key feature of the adaptive immune system is the generation of memory B and T cells and long-lived plasma cells, providing protective immunity against recurring infectious agents. Memory B cells are generated in germinal center (GC) reactions in the course of T cell-dependent immune responses and are distinguished from naive B cells by an increased lifespan, faster and stronger response to stimulation and expression of somatically mutated and affinity matured immunoglobulin (Ig) genes. Approximately 40% of human B cells in adults are memory B cells, and several subsets were identified. Besides IgG+ and IgA+ memory B cells, 50% of peripheral blood memory B cells express IgM with or without IgD. Further smaller subpopulations have additionally been described. These various subsets share typical memory B cell features, but likely also fulfill distinct functions. IgM memory B cells appear to have the propensity for refined adaptation upon restimulation in additional GC reactions, whereas reactivated IgG B cells rather differentiate directly into plasma cells. The human memory B-cell pool is characterized by (sometimes amazingly large) clonal expansions, often showing extensive intraclonal IgV gene diversity. Moreover, memory B-cell clones are frequently composed of members of various subsets, showing that from a single GC B-cell clone a variety of memory B cells with distinct functions is generated. Thus, the human memory B-cell compartment is highly diverse and flexible. Several B-cell malignancies display features suggesting a derivation from memory B cells. This includes a subset of chronic lymphocytic leukemia, hairy cell leukemia and marginal zone lymphomas. The exposure of memory B cells to oncogenic events during their generation in the GC, the longevity of these B cells and the ease to activate them may be key determinants for their malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Rajewsky K . Clonal selection and learning in the antibody system. Nature 1996; 381: 751–758.

    Article  CAS  PubMed  Google Scholar 

  2. Klein U, Rajewsky K, Küppers R . Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998; 188: 1679–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Defrance T, Taillardet M, Genestier L . T cell-independent B cell memory. Curr Opin Immunol 2011; 23: 330–336.

    Article  CAS  PubMed  Google Scholar 

  4. Jacob J, Kelsoe G . In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 1992; 176: 679–687.

    Article  CAS  PubMed  Google Scholar 

  5. Klein U, Dalla-Favera R . Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 2008; 8: 22–33.

    Article  CAS  PubMed  Google Scholar 

  6. Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y, Kurosaki T et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 2011; 34: 961–972.

    Article  CAS  PubMed  Google Scholar 

  7. Di Noia JM, Neuberger MS . Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 2007; 76: 1–22.

    Article  CAS  PubMed  Google Scholar 

  8. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA 1998; 95: 11816–11821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Victora GD, Nussenzweig MC . Germinal centers. Annu Rev Immunol 2012; 30: 429–457.

    Article  CAS  PubMed  Google Scholar 

  10. Shapiro-Shelef M, Calame K . Regulation of plasma-cell development. Nat Rev Immunol 2005; 5: 230–242.

    Article  CAS  PubMed  Google Scholar 

  11. Gitlin AD, von Boehmer L, Gazumyan A, Shulman Z, Oliveira TY, Nussenzweig MC . Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory. Immunity 2016; 44: 769–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Basso K, Klein U, Niu H, Stolovitzky GA, Tu Y, Califano A et al. Tracking CD40 signaling during germinal center development. Blood 2004; 104: 4088–4096.

    Article  CAS  PubMed  Google Scholar 

  13. Maarof G, Bouchet-Delbos L, Gary-Gouy H, Durand-Gasselin I, Krzysiek R, Dalloul A . Interleukin-24 inhibits the plasma cell differentiation program in human germinal center B cells. Blood 2010; 115: 1718–1726.

    Article  CAS  PubMed  Google Scholar 

  14. Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y, Nakayama M et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat Immunol 2016; 17: 861–869.

    Article  CAS  PubMed  Google Scholar 

  15. Kaji T, Ishige A, Hikida M, Taka J, Hijikata A, Kubo M et al. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med 2012; 209: 2079–2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor JJ, Pape KA, Jenkins MK . A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med 2012; 209: 597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klein U, Küppers R, Rajewsky K . Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 1997; 89: 1288–1298.

    Article  CAS  PubMed  Google Scholar 

  18. Macallan DC, Wallace DL, Zhang Y, Ghattas H, Asquith B, de Lara C et al. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood 2005; 105: 3633–3640.

    Article  CAS  PubMed  Google Scholar 

  19. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R . Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 2003; 171: 4969–4973.

    Article  CAS  PubMed  Google Scholar 

  20. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 2008; 455: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bernasconi NL, Traggiai E, Lanzavecchia A . Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002; 298: 2199–2202.

    Article  CAS  PubMed  Google Scholar 

  22. Good KL, Avery DT, Tangye SG . Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol 2009; 182: 890–901.

    Article  CAS  PubMed  Google Scholar 

  23. Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N, Chew GY et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med 2010; 207: 155–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernasconi NL, Onai N, Lanzavecchia A . A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    Article  CAS  PubMed  Google Scholar 

  25. Good KL, Tangye SG . Decreased expression of Kruppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses. Proc Natl Acad Sci USA 2007; 104: 13420–13425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engels N, König LM, Heemann C, Lutz J, Tsubata T, Griep S et al. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol 2009; 10: 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  27. Budeus B, Schweigle de Reynoso S, Przekopowitz M, Hoffmann D, Seifert M, Küppers R . Complexity of the human memory B-cell compartment is determined by the versatility of clonal diversification in germinal centers. Proc Natl Acad Sci USA 2015; 112: E5281–E5289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seifert M, Küppers R . Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J Exp Med 2009; 206: 2659–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu YC, Kipling D, Leong HS, Martin V, Ademokun AA, Dunn-Walters DK . High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 2010; 116: 1070–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weill JC, Weller S, Reynaud CA . Human marginal zone B cells. Annu Rev Immunol 2009; 27: 267–285.

    Article  CAS  PubMed  Google Scholar 

  31. Dogan I, Bertocci B, Vilmont V, Delbos F, Megret J, Storck S et al. Multiple layers of B cell memory with different effector functions. Nat Immunol 2009; 10: 1292–1299.

    Article  CAS  PubMed  Google Scholar 

  32. McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG . Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat Immunol 2015; 16: 296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V, Drees B et al. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc Natl Acad Sci USA 2015; 112: E546–E555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bende RJ, van Maldegem F, Triesscheijn M, Wormhoudt TA, Guijt R, van Noesel CJ . Germinal centers in human lymph nodes contain reactivated memory B cells. J Exp Med 2007; 204: 2655–2665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshida T, Mei H, Dorner T, Hiepe F, Radbruch A, Fillatreau S et al. Memory B and memory plasma cells. Immunol Rev 2010; 237: 117–139.

    Article  CAS  PubMed  Google Scholar 

  36. Agematsu K, Nagumo H, Yang FC, Nakazawa T, Fukushima K, Ito S et al. B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol 1997; 27: 2073–2079.

    Article  CAS  PubMed  Google Scholar 

  37. Fecteau JF, Cote G, Neron S . A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J Immunol 2006; 177: 3728–3736.

    Article  CAS  PubMed  Google Scholar 

  38. Colonna-Romano G, Bulati M, Aquino A, Pellicano M, Vitello S, Lio D et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev 2009; 130: 681–690.

    Article  CAS  PubMed  Google Scholar 

  39. Wu YC, Kipling D, Dunn-Walters DK . The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front Immunol 2011; 2: 81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kometani K, Nakagawa R, Shinnakasu R, Kaji T, Rybouchkin A, Moriyama S et al. Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation. Immunity 2013; 39: 136–147.

    Article  CAS  PubMed  Google Scholar 

  41. Lutz J, Dittmann K, Bosl MR, Winkler TH, Wienands J, Engels N . Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production. Nat Commun 2016; 6: 8575.

    Article  CAS  Google Scholar 

  42. Neutra MR, Pringault E, Kraehenbuhl JP . Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 1996; 14: 275–300.

    Article  CAS  PubMed  Google Scholar 

  43. Lundell AC, Rabe H, Quiding-Jarbrink M, Andersson K, Nordstrom I, Adlerberth I et al. Development of gut-homing receptors on circulating B cells during infancy. Clin Immunol 2011; 138: 97–106.

    Article  CAS  PubMed  Google Scholar 

  44. Berkowska MA, Driessen GJ, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 2011; 118: 2150–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berkowska MA, Schickel JN, Grosserichter-Wagener C, de Ridder D, Ng YS, van Dongen JJ et al. Circulating human CD27-IgA+ memory b cells recognize bacteria with polyreactive Igs. J Immunol 2015; 195: 1417–1426.

    Article  CAS  PubMed  Google Scholar 

  46. Erazo A, Kutchukhidze N, Leung M, Christ AP, Urban Jr JF, Curotto de Lafaille MA et al. Unique maturation program of the IgE response in vivo. Immunity 2007; 26: 191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He JS, Narayanan S, Subramaniam S, Ho WQ, Lafaille JJ, Curotto de Lafaille MA . Biology of IgE production: IgE cell differentiation and the memory of IgE responses. Curr Top Microbiol Immunol 2015; 388: 1–19.

    CAS  PubMed  Google Scholar 

  48. Gould HJ, Ramadani F . IgE responses in mouse and man and the persistence of IgE memory. Trends Immunol 2015; 36: 40–48.

    Article  CAS  PubMed  Google Scholar 

  49. Giesecke C, Frölich D, Reiter K, Mei HE, Wirries I, Kuhly R et al. Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells. J Immunol 2014; 192: 3091–3100.

    Article  CAS  PubMed  Google Scholar 

  50. Bagnara D, Squillario M, Kipling D, Mora T, Walczak AM, Da Silva L et al. A reassessment of IgM memory subsets in humans. J Immunol 2015; 195: 3716–3724.

    Article  CAS  PubMed  Google Scholar 

  51. Reynaud CA, Mackay CR, Muller RG, Weill JC . Somatic generation of diversity in a mammalian primary lymphoid organ: the sheep ileal Peyer's patches. Cell 1991; 64: 995–1005.

    Article  CAS  PubMed  Google Scholar 

  52. Weller S, Faili A, Garcia C, Braun MC, Le Deist FF, de Saint Basile GG et al. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci USA 2001; 98: 1166–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scheeren FA, Nagasawa M, Weijer K, Cupedo T, Kirberg J, Legrand N et al. T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J Exp Med 2008; 205: 2033–2042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian C, Luskin GK, Dischert KM, Higginbotham JN, Shepherd BE, Crowe JE Jr . Evidence for preferential Ig gene usage and differential TdT and exonuclease activities in human naive and memory B cells. Mol Immunol 2007; 44: 2173–2183.

    Article  CAS  PubMed  Google Scholar 

  55. Weller S, Mamani-Matsuda M, Picard C, Cordier C, Lecoeuche D, Gauthier F et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J Exp Med 2008; 205: 1331–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kruetzmann S, Rosado MM, Weber H, Germing U, Tournilhac O, Peter HH et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 2003; 197: 939–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME et al. Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 2004; 104: 3647–3654.

    Article  CAS  PubMed  Google Scholar 

  58. Cameron PU, Jones P, Gorniak M, Dunster K, Paul E, Lewin S et al. Splenectomy associated changes in IgM memory B cells in an adult spleen registry cohort. PLoS One 2011; 6: e23164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wasserstrom H, Bussel J, Lim LC, Cunningham-Rundles C . Memory B cells and pneumococcal antibody after splenectomy. J Immunol 2008; 181: 3684–3689.

    Article  CAS  PubMed  Google Scholar 

  60. Good KL, Bryant VL, Tangye SG . Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol 2006; 177: 5236–5247.

    Article  CAS  PubMed  Google Scholar 

  61. Richards SJ, Morgan GJ, Hillmen P . Immunophenotypic analysis of B cells in PNH: insights into the generation of circulating naive and memory B cells. Blood 2000; 96: 3522–3528.

    Article  CAS  PubMed  Google Scholar 

  62. Della Valle L, Dohmen SE, Verhagen OJ, Berkowska MA, Vidarsson G, Ellen van der Schoot C . The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells. J Immunol 2014; 193: 1071–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herrera D, Rojas OL, Duarte-Rey C, Mantilla RD, Angel J, Franco MA . Simultaneous assessment of rotavirus-specific memory B cells and serological memory after B cell depletion therapy with rituximab. PLoS One 2014; 9: e97087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Scherer EM, Smith RA, Simonich CA, Niyonzima N, Carter JJ, Galloway DA . Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity. PLoS Pathog 2014; 10: e1004461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Raaphorst FM, van Bergen J, van den Bergh RL, van der Keur M, de Krijger R, Bruining J et al. Usage of TCRAV and TCRBV gene families in human fetal and adult TCR rearrangements. Immunogenetics 1994; 39: 343–350.

    Article  CAS  PubMed  Google Scholar 

  66. Gibbons D, Fleming P, Virasami A, Michel ML, Sebire NJ, Costeloe K et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med 2014; 20: 1206–1210.

    Article  CAS  PubMed  Google Scholar 

  67. Brodeur SR, Angelini F, Bacharier LB, Blom AM, Mizoguchi E, Fujiwara H et al. C4b-binding protein (C4BP) activates B cells through the CD40 receptor. Immunity 2003; 18: 837–848.

    Article  CAS  PubMed  Google Scholar 

  68. Gaspal FM, McConnell FM, Kim MY, Gray D, Kosco-Vilbois MH, Raykundalia CR et al. The generation of thymus-independent germinal centers depends on CD40 but not on CD154, the T cell-derived CD40-ligand. Eur J Immunol 2006; 36: 1665–1673.

    Article  CAS  PubMed  Google Scholar 

  69. Cantaert T, Schickel JN, Bannock JM, Ng YS, Massad C, Oe T et al. Activation-induced cytidine deaminase expression in human B cell precursors is essential for central B cell tolerance. Immunity 2015; 43: 884–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cattoretti G, Buttner M, Shaknovich R, Kremmer E, Alobeid B, Niedobitek G . Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 2006; 107: 3967–3975.

    Article  CAS  PubMed  Google Scholar 

  71. Moldenhauer G, Popov SW, Wotschke B, Bruderlein S, Riedl P, Fissolo N et al. AID expression identifies interfollicular large B cells as putative precursors of mature B-cell malignancies. Blood 2006; 107: 2470–2473.

    Article  CAS  PubMed  Google Scholar 

  72. Willenbrock K, Jungnickel B, Hansmann ML, Küppers R . Human splenic marginal zone B cells lack expression of activation-induced cytidine deaminase. Eur J Immunol 2005; 35: 3002–3007.

    Article  CAS  PubMed  Google Scholar 

  73. Barone F, Patel P, Sanderson JD, Spencer J . Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination. Mucosal Immunol 2009; 2: 495–503.

    Article  CAS  PubMed  Google Scholar 

  74. Pillai S, Cariappa A, Moran ST . Marginal zone B cells. Annu Rev Immunol 2005; 23: 161–196.

    Article  CAS  PubMed  Google Scholar 

  75. Garraud O, Borhis G, Badr G, Degrelle S, Pozzetto B, Cognasse F et al. Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond. BMC Immunol 2012; 13: 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dunn-Walters DK, Isaacson PG, Spencer J . Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med 1995; 182: 559–566.

    Article  CAS  PubMed  Google Scholar 

  77. Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE . Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med 1998; 188: 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mateo MS, Mollejo M, Villuendas R, Algara P, Sanchez-Beato M, Martinez P et al. Molecular heterogeneity of splenic marginal zone lymphomas: analysis of mutations in the 5' non-coding region of the bcl-6 gene. Leukemia 2001; 15: 628–634.

    Article  CAS  PubMed  Google Scholar 

  79. Stein K, Hummel M, Korbjuhn P, Foss HD, Anagnostopoulos I, Marafioti T et al. Monocytoid B cells are distinct from splenic marginal zone cells and commonly derive from unmutated naive B cells and less frequently from postgerminal center B cells by polyclonal transformation. Blood 1999; 94: 2800–2808.

    Article  CAS  PubMed  Google Scholar 

  80. Tierens A, Delabie J, Michiels L, Vandenberghe P, De Wolf-Peeters C . Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood 1999; 93: 226–234.

    Article  CAS  PubMed  Google Scholar 

  81. Descatoire M, Weller S, Irtan S, Sarnacki S, Feuillard J, Storck S et al. Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J Exp Med 2014; 211: 987–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Puga I, Cols M, Barra CM, He B, Cassis L, Gentile M et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 2012; 13: 170–180.

    Article  CAS  Google Scholar 

  83. Nagelkerke SQ, aan de Kerk DJ, Jansen MH, van den Berg TK, Kuijpers TW . Failure to detect functional neutrophil B helper cells in the human spleen. PLoS One 2014; 9: e88377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Spencer J, Perry ME, Dunn-Walters DK . Human marginal-zone B cells. Immunol Today 1998; 19: 421–426.

    Article  CAS  PubMed  Google Scholar 

  85. Liu YJ, de Bouteiller O, Arpin C, Briere F, Galibert L, Ho S et al. Normal human IgD+IgM- germinal center B cells can express up to 80 mutations in the variable region of their IgD transcripts. Immunity 1996; 4: 603–613.

    Article  CAS  PubMed  Google Scholar 

  86. Seifert M, Steimle-Grauer SA, Goossens T, Hansmann ML, Bräuninger A, Küppers R . A model for the development of human IgD-only B cells: genotypic analyses suggest their generation in superantigen driven immune responses. Mol Immunol 2009; 46: 630–639.

    Article  CAS  PubMed  Google Scholar 

  87. Müller C, Siemer D, Lehnerdt G, Lang S, Küppers R . Molecular analysis of IgD-positive human germinal centres. Int Immunol 2010; 22: 289–298.

    Article  PubMed  CAS  Google Scholar 

  88. Forsgren A, Grubb AO . Many bacterial species bind human IgD. J Immunol 1979; 122: 1468–1472.

    CAS  PubMed  Google Scholar 

  89. van Nieuwkoop JA, Radl J . Light chain types of IgD in human bone marrow and serum. Clin Exp Immunol 1985; 60: 654–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sanz I, Wei C, Lee FE, Anolik J . Phenotypic and functional heterogeneity of human memory B cells. Semin Immunol 2008; 20: 67–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ehrhardt GR, Hsu JT, Gartland L, Leu CM, Zhang S, Davis RS et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J Exp Med 2005; 202: 783–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O'Shea MA et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 2008; 205: 1797–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S, Traore B et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol 2009; 183: 2176–2182.

    Article  CAS  PubMed  Google Scholar 

  94. Portugal S, Tipton CM, Sohn H, Kone Y, Wang J, Li S et al. Malaria-associated atypical memory B cells exhibit markedly reduced B cell receptor signaling and effector function. Elife 2015; 4: e07218.

    Article  PubMed Central  Google Scholar 

  95. Sullivan RT, Kim CC, Fontana MF, Feeney ME, Jagannathan P, Boyle MJ et al. FCRL5 delineates functionally impaired memory B cells associated with Plasmodium falciparum exposure. PLoS Pathog 2015; 11: e1004894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Griffin DO, Holodick NE, Rothstein TL . Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 2011; 208: 67–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Perez-Andres M, Grosserichter-Wagener C, Teodosio C, van Dongen JJ, Orfao A, van Zelm MC . The nature of circulating CD27+CD43+ B cells. J Exp Med 2011; 208: 2565–2566.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Weston-Bell N, Townsend M, Di Genova G, Forconi F, Sahota SS . Defining origins of malignant B cells: a new circulating normal human IgM(+)D(+) B-cell subset lacking CD27 expression and displaying somatically mutated IGHV genes as a relevant memory population. Leukemia 2009; 23: 2075–2080.

    Article  CAS  PubMed  Google Scholar 

  99. Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016; 48: 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arnaout R, Lee W, Cahill P, Honan T, Sparrow T, Weiand M et al. High-resolution description of antibody heavy-chain repertoires in humans. PLoS One 2011; 6: e22365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 2009; 1: 12ra23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mroczek ES, Ippolito GC, Rogosch T, Hoi KH, Hwangpo TA, Brand MG et al. Differences in the composition of the human antibody repertoire by B cell subsets in the blood. Front Immunol 2014; 5: 96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK . Different B cell populations mediate early and late memory during an endogenous immune response. Science 2011; 331: 1203–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Küppers R, Klein U, Hansmann ML, Rajewsky K . Cellular origin of human B-cell lymphomas. N Engl J Med 1999; 341: 1520–1529.

    Article  PubMed  Google Scholar 

  105. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Dürig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Novak U, Basso K, Pasqualucci L, Dalla-Favera R, Bhagat G . Genomic analysis of non-splenic marginal zone lymphomas (MZL) indicates similarities between nodal and extranodal MZL and supports their derivation from memory B-cells. Br J Haematol 2011; 155: 362–365.

    Article  CAS  PubMed  Google Scholar 

  108. Küppers R, Hajadi M, Plank L, Rajewsky K, Hansmann ML . Molecular Ig gene analysis reveals that monocytoid B cell lymphoma is a malignancy of mature B cells carrying somatically mutated V region genes and suggests that rearrangement of the kappa-deleting element (resulting in deletion of the Ig kappa enhancers) abolishes somatic hypermutation in the human. Eur J Immunol 1996; 26: 1794–1800.

    Article  PubMed  Google Scholar 

  109. Basso K, Liso A, Tiacci E, Benedetti R, Pulsoni A, Foa R et al. Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors. J Exp Med 2004; 199: 59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bertoni F, Ponzoni M . The cellular origin of mantle cell lymphoma. Int J Biochem Cell Biol 2007; 39: 1747–1753.

    Article  CAS  PubMed  Google Scholar 

  111. Bahler DW, Pindzola JA, Swerdlow SH . Splenic marginal zone lymphomas appear to originate from different B cell types. Am J Pathol 2002; 161: 81–88.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gurrieri C, McGuire P, Zan H, Yan XJ, Cerutti A, Albesiano E et al. Chronic lymphocytic leukemia B cells can undergo somatic hypermutation and intraclonal immunoglobulin V(H)DJ(H) gene diversification. J Exp Med 2002; 196: 629–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chiorazzi N, Ferrarini M . B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003; 21: 841–894.

    Article  CAS  PubMed  Google Scholar 

  114. Sutton LA, Agathangelidis A, Belessi C, Darzentas N, Davi F, Ghia P et al. Antigen selection in B-cell lymphomas—tracing the evidence. Semin Cancer Biol 2013; 23: 399–409.

    Article  CAS  PubMed  Google Scholar 

  115. Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V, Mouly E et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov 2014; 4: 1088–1101.

    Article  CAS  PubMed  Google Scholar 

  116. Forconi F, Sahota SS, Raspadori D, Ippoliti M, Babbage G, Lauria F et al. Hairy cell leukemia: at the crossroad of somatic mutation and isotype switch. Blood 2004; 104: 3312–3317.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bettina Budeus for support. Own work discussed in this review was supported by the Deutsche Forschungsgemeinschaft through Grants Ku1315/8-1, GRK1431/2 and SE1885/2-1. We apologize to those colleagues whose primary work could not be cited because of reference restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Küppers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, M., Küppers, R. Human memory B cells. Leukemia 30, 2283–2292 (2016). https://doi.org/10.1038/leu.2016.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.226

This article is cited by

Search

Quick links