Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG

Abstract

Aberrant post-transcriptional regulation by microRNAs (miRNAs) has been shown to be involved in the pathogenesis of acute myeloid leukemia (AML). In a previous study, we performed a large functional screen using a retroviral barcoded miRNA expression library. Here, we report that overexpression of miR-9/9* in myeloid 32D cell line (32D-miR-9/9*) had profound impact on granulocyte colony-stimulating factor-induced differentiation. Further in vitro studies showed that enforced expression of miR-9/9* blocked normal neutrophil development in 32D and in primary murine lineage-negative bone marrow cells. We examined the expression of miR-9/9* in a cohort of 647 primary human AMLs. In most cases, miR-9 and miR-9* were significantly upregulated and their expression levels varied according to AML subtype, with the highest expression in MLL-related leukemias harboring 11q23 abnormalities and the lowest expression in AML cases with t(8;21) and biallelic mutations in CEBPA. Gene expression profiling of AMLs with high expression of miR-9/9* and 32D-miR-9/9* identified ETS-related gene (Erg) as the only common potential target. Upregulation of ERG in 32D cells rescued miR-9/9*-induced block in neutrophil differentiation. Taken together, this study demonstrates that miR-9/9* are aberrantly expressed in most of AML cases and interfere with normal neutrophil differentiation by downregulation of ERG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Döhner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  Google Scholar 

  2. Reikvam H, Hatfield KJ, Kittang AO, Hovland R, Bruserud O . Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J Biomed Biotechnol 2011; 2011: 104631.

    Article  Google Scholar 

  3. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005; 106: 3747–3754.

    Article  CAS  Google Scholar 

  4. Döhner K, Döhner H . Molecular characterization of acute myeloid leukemia. Haematologica 2008; 93: 976–982.

    Article  Google Scholar 

  5. Fröhling S, Scholl C, Gilliland DG, Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–6295.

    Article  Google Scholar 

  6. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  Google Scholar 

  7. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Löwenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    Article  CAS  Google Scholar 

  8. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  Google Scholar 

  9. Wang GG, Cai L, Pasillas MP, Kamps MP . NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007; 9: 804–812.

    Article  CAS  Google Scholar 

  10. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  11. Ding XC, Weiler J, Grosshans H . Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol 2009; 27: 27–36.

    Article  CAS  Google Scholar 

  12. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E . Deadenylation is a widespread effect of miRNA regulation. RNA 2009; 15: 21–32.

    Article  CAS  Google Scholar 

  13. Schraivogel D, Weinmann L, Beier D, Tabatabai G, Eichner A, Zhu JY et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J 2011; 30: 4309–4322.

    Article  CAS  Google Scholar 

  14. Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T et al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 2009; 69: 5936–5945.

    Article  CAS  Google Scholar 

  15. Eyholzer M, Schmid S, Schardt JA, Haefliger S, Mueller BU, Pabst T . Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res 2010; 34: 672–676.

    Article  CAS  Google Scholar 

  16. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Muller-Tidow C, Bohlander SK et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115: 1768–1778.

    Article  CAS  Google Scholar 

  17. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  Google Scholar 

  18. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114: 5331–5341.

    Article  CAS  Google Scholar 

  19. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 2008; 205: 2499–2506.

    Article  CAS  Google Scholar 

  20. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 2008; 105: 3945–3950.

    Article  CAS  Google Scholar 

  21. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  Google Scholar 

  22. Chen P, Price C, Li Z, Li Y, Cao D, Wiley A et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 11511–11516.

    Article  CAS  Google Scholar 

  23. Emmrich S, Katsman-Kuipers JE, Henke K, Khatib ME, Jammal R, Engeland F et al. miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia 2014; 28: 1022–1032.

    Article  CAS  Google Scholar 

  24. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL . The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 2008; 28: 14341–14346.

    Article  CAS  Google Scholar 

  25. Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L . MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 2008; 11: 641–648.

    Article  CAS  Google Scholar 

  26. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247–256.

    Article  CAS  Google Scholar 

  27. Zhao C, Sun G, Li S, Shi Y . A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009; 16: 365–371.

    Article  CAS  Google Scholar 

  28. Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S et al. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 2012; 29: 1037–1043.

    Article  CAS  Google Scholar 

  29. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282–5287.

    Article  CAS  Google Scholar 

  30. Lukiw WJ, Pogue AI . Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 2007; 101: 1265–1269.

    Article  CAS  Google Scholar 

  31. Yu T, Liu K, Wu Y, Fan J, Chen J, Li C et al. MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/beta-catenin signaling pathway. Oncogene 2014; 33: 5017–5027.

    Article  CAS  Google Scholar 

  32. Wang J, Yang B, Han L, Li X, Tao H, Zhang S et al. Demethylation of miR-9-3 and miR-193a genes suppresses proliferation and promotes apoptosis in non-small cell lung cancer cell lines. Cell Physiol Biochem 2013; 32: 1707–1719.

    Article  CAS  Google Scholar 

  33. Sun SM, Rockova V, Bullinger L, Dijkstra MK, Döhner H, Löwenberg B et al. The prognostic relevance of miR-212 expression with survival in cytogenetically and molecularly heterogeneous AML. Leukemia 2013; 27: 100–106.

    Article  CAS  Google Scholar 

  34. Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den Berge IJ, Sun SM et al. MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 2011; 118: 916–925.

    Article  CAS  Google Scholar 

  35. de Koning JP, Soede-Bobok AA, Ward AC, Schelen AM, Antonissen C, van Leeuwen D et al. STAT3-mediated differentiation and survival and of myeloid cells in response to granulocyte colony-stimulating factor: role for the cyclin-dependent kinase inhibitor p27(Kip1). Oncogene 2000; 19: 3290–3298.

    Article  CAS  Google Scholar 

  36. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Böttcher S, Ritgen M et al. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012; 26: 1986–2010.

    Article  CAS  Google Scholar 

  37. van Dongen JJ, Lhermitte L, Böttcher S, Almeida J, van der Velden VH, Flores-Montero J et al. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26: 1908–1975.

    Article  CAS  Google Scholar 

  38. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  Google Scholar 

  39. Sun SM, Dijkstra MK, Bijkerk AC, Brooimans RA, Valk PJ, Erkeland SJ et al. Transition of highly specific microRNA expression patterns in association with discrete maturation stages of human granulopoiesis. Br J Haematol 2011; 155: 395–398.

    Article  CAS  Google Scholar 

  40. Arora H, Qureshi R, Jin S, Park AK, Park WY . miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mol Med 2011; 43: 298–304.

    Article  CAS  Google Scholar 

  41. Liu S, Kumar SM, Lu H, Liu A, Yang R, Pushparajan A et al. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol 2012; 226: 61–72.

    Article  CAS  Google Scholar 

  42. Carrère S, Verger A, Flourens A, Stehelin D, Duterque-Coquillaud M . Erg proteins, transcription factors of the Ets family, form homo, heterodimers and ternary complexes via two distinct domains. Oncogene 1998; 16: 3261–3268.

    Article  Google Scholar 

  43. Taoudi S, Bee T, Hilton A, Knezevic K, Scott J, Willson TA et al. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev 2011; 25: 251–262.

    Article  CAS  Google Scholar 

  44. Loughran SJ, Kruse EA, Hacking DF, de Graaf CA, Hyland CD, Willson TA et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 2008; 9: 810–819.

    Article  CAS  Google Scholar 

  45. Ng AP, Loughran SJ, Metcalf D, Hyland CD, de Graaf CA, Hu Y et al. Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood 2011; 118: 2454–2461.

    Article  CAS  Google Scholar 

  46. Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 2010; 7: 532–544.

    Article  CAS  Google Scholar 

  47. Thoms JA, Birger Y, Foster S, Knezevic K, Kirschenbaum Y, Chandrakanthan V et al. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 2011; 117: 7079–7089.

    Article  CAS  Google Scholar 

  48. Carmichael CL, Metcalf D, Henley KJ, Kruse EA, Di Rago L, Mifsud S et al. Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia. Proc Natl Acad Sci USA 2012; 109: 15437–15442.

    Article  CAS  Google Scholar 

  49. Tursky ML, Beck D, Thoms JA, Huang Y, Kumari A, Unnikrishnan A et al. Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias. Leukemia 2014; 29: 819–827.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by an Erasmus MC grant (to MJL), Dutch Cancer Society grant (EMCR2009-4472 to MJL) and the Deutsche Forschungsgemeinschaft (SFB 1074 project B03 to LB). LB was supported in part by the Deutsche Forschungsgemeinschaft (Heisenberg-Stipendium BU 1339/3-1). We thank Dr VHJ van der Velden for help with flow cytometric analysis, Dr PJM Valk for providing the Dutch AML data set and critical revision of the manuscript and Professor Dr HR Delwel for his mentorship and contribution to interpretation of the data.

Author contributions

KN and SMS planned, carried out the experiments and analyzed the data. LB and HD provided the German data set and carried out experiments. KvL performed morphological evaluation and quantification of cytospins. SJE, CE and MKD performed experiments. EMJB, SJE, HD, LB, BL and MJL designed the study and interpreted the results. KN, SMS, SJE, LB, HD, BL and MJL wrote or contributed to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Jongen-Lavrencic.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowek, K., Sun, S., Bullinger, L. et al. Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG. Leukemia 30, 229–237 (2016). https://doi.org/10.1038/leu.2015.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.183

This article is cited by

Search

Quick links