Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Genomic and epigenomic co-evolution in follicular lymphomas

Abstract

Follicular lymphoma (FL) with a t(14;18) is a B-cell neoplasm clinically characterized by multiple recurrencies. In order to investigate the clonal evolution of this lymphoma, we studied paired primary and relapse tumor samples from 33 patients with recurrent non-transformed t(14;18)-positive FL. We reconstructed phylogenetic trees of the evolution by taking advantage of the activation-induced cytidine deaminase (AID)-mediated somatic hypermutation (SHM) active in the germinal center reaction using sequences of the clonal VHDHJH rearrangements of the immunoglobulin heavy chain (IGH) locus. Mutational analysis of the IGH locus showed evidence for ongoing somatic mutation and for counter-selection of mutations affecting the BCR conformation during tumor evolution. We further followed evolutionary divergence by targeted sequencing of gene loci affected by aberrant SHM as well as of known driver genes of lymphomagenesis, and by array-based genome-wide chromosomal imbalance and DNA methylation analysis. We observed a wide spectrum of evolutionary patterns ranging from almost no evolution to divergent evolution within recurrent non-transformed t(14;18) FL. Remarkably, we observed a correlation of the magnitude of evolutionary divergence across all genetic and epigenetic levels suggesting co-evolution. The distribution of coding mutations in driver genes and the correlation with SHM suggest CREBBP and AID to be potential modifiers of genetic and epigenetic co-evolution in FL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumors of the Haematopoietic and Lymphoid Tissues. IARC: Lyon, 2008.

    Google Scholar 

  2. Montoto S, Davies AJ, Matthews J, Calaminici M, Norton AJ, Amess J et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol 2007; 25: 2426–2433.

    Article  PubMed  Google Scholar 

  3. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 1989; 57: 79–88.

    Article  CAS  PubMed  Google Scholar 

  4. Janz S, Potter M, Rabkin CS . Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer 2003; 36: 211–223.

    Article  CAS  PubMed  Google Scholar 

  5. Sachen KL, Strohman MJ, Singletary J, Alizadeh AA, Kattah NH, Lossos C et al. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood 2012; 120: 4182–4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Radcliffe CM, Arnold JN, Suter DM, Wormald MR, Harvey DJ, Royle L et al. Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor. J Biol Chem 2007; 282: 7405–7415.

    Article  CAS  PubMed  Google Scholar 

  7. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med 2006; 354: 2419–2430.

    Article  CAS  PubMed  Google Scholar 

  8. Schwaenen C, Viardot A, Berger H, Barth TF, Bentink S, Döhner H et al. Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosomes Cancer 2009; 48: 39–54.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG . The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brochet X, Lefranc MP, Giudicelli V . IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 2008; 36: W503–W508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci USA 2008; 105: 13081–13086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stamatakis A . RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22: 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  13. Alamyar E, Giudicelli V, Li S, Duroux P, Lefranc MP . IMGT/HighV-QUEST: the IMGT® web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res 2012; 8: 26.

    Google Scholar 

  14. Uduman M, Yaari G, Hershberg U, Stern JA, Shlomchik MJ, Kleinstein SH . Detecting selection in immunoglobulin sequences. Nucleic Acids Res 2011; 39: W499–W504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hershberg U, Uduman M, Shlomchik MJ, Kleinstein SH . Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol 2008; 20: 683–694.

    Article  CAS  PubMed  Google Scholar 

  16. Yaari G, Uduman M, Kleinstein SH . Quantifying selection in high-throughput Immunoglobulin sequencing data sets. Nucleic Acids Res 2012; 40: e134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitehead A, Whitehead J . A general parametric approach to the meta-analysis of randomized clinical trials. Stat Med 1991; 10: 1665–1677.

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 2009; 5: e1000502.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  20. DiCiccio TJ, Efron B . Bootstrap Confidence Intervals. Stat Sci 1996; 11: 189–212.

    Article  Google Scholar 

  21. d'Amore F, Chan E, Iqbal J, Geng H, Young K, Xiao L et al. Clonal evolution in t(14;18)-positive follicular lymphoma, evidence for multiple common pathways, and frequent parallel clonal evolution. Clin Cancer Res 2008; 14: 7180–7187.

    Article  CAS  PubMed  Google Scholar 

  22. Carlotti E, Wrench D, Matthews J, Iqbal S, Davies A, Norton A et al. Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone. Blood 2009; 113: 3553–3557.

    Article  CAS  PubMed  Google Scholar 

  23. Eide MB, Liestøl K, Lingjaerde OC, Hystad ME, Kresse SH, Meza-Zepeda L et al. Genomic alterations reveal potential for higher grade transformation in follicular lymphoma and confirm parallel evolution of tumor cell clones. Blood 2010; 116: 1489–1497.

    Article  CAS  PubMed  Google Scholar 

  24. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Küppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  PubMed  Google Scholar 

  25. Dörner T, Foster SJ, Farner NL, Lipsky PE . Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands. Eur J Immunol 1998; 28: 3384–3396.

    Article  PubMed  Google Scholar 

  26. O'Riain C, O'Shea DM, Yang Y, Le Dieu R, Gribben JG, Summers K et al. Array-based DNA methylation profiling in follicular lymphoma. Leukemia 2009; 23: 1858–1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 2011; 471: 189–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 2013; 121: 1604–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burger JA, Chiorazzi N . B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34: 592–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kluin PM . Origin and migration of follicular lymphoma cells. Haematologica 2013; 98: 1331–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wartenberg M, Vasil P, zum Bueschenfelde CM, Ott G, Rosenwald A, Fend F et al. Somatic hypermutation analysis in follicular lymphoma provides evidence suggesting bidirectional cell migration between lymph node and bone marrow during disease progression and relapse. Haematologica 2013; 98: 1433–1441.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmidt J, Salaverria I, Haake A, Bonzheim I, Adam P, Montes-Moreno S et al. Increasing genomic and epigenomic complexity in the clonal evolution from in situ to manifest t(14;18)-positive follicular lymphoma. Leukemia 2013; 28: 1103–1112.

    Article  PubMed  Google Scholar 

  35. Bonzheim I, Salaverria I, Haake A, Gastl G, Adam P, Siebert R et al. A unique case of follicular lymphoma provides insights to the clonal evolution from follicular lymphoma in situ to manifest follicular lymphoma. Blood 2011; 118: 3442–3444.

    Article  CAS  PubMed  Google Scholar 

  36. Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB et al. Genetics of follicular lymphoma transformation. Cell Rep 2014; 6: 130–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okosun J, Bödör C, Wang J, Araf S, Yang CY, Pan C et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 2014; 46: 176–181.

    Article  CAS  PubMed  Google Scholar 

  38. Staszewski O, Baker RE, Ucher AJ, Martier R, Stavnezer J, Guikema JE . Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell 2011; 41: 232–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Przybilla J, Galle J, Rohlf T . Is adult stem cell aging driven by conflicting modes of chromatin remodeling? Bioessays 2012; 34: 841–848.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technical staff of the involved laboratories for expert technical assistance. This project was enabled by a grant from the German Minister of Research and Technology BMBF/PTJ 0315452 granted within the MEDSYS-program. Material was made available by the MMML Consortium funded by the Deutsche Krebshilfe (70-3173-Tr3).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M Loeffler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loeffler, M., Kreuz, M., Haake, A. et al. Genomic and epigenomic co-evolution in follicular lymphomas. Leukemia 29, 456–463 (2015). https://doi.org/10.1038/leu.2014.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.209

This article is cited by

Search

Quick links