Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting

Abstract

The ecto-enzyme CD38 is gaining momentum as a novel therapeutic target for patients with hematological malignancies, with several anti-CD38 monoclonal antibodies in clinical trials with promising results. In chronic lymphocytic leukemia (CLL) CD38 is a marker of unfavorable prognosis and a central factor in the pathogenetic network underlying the disease: activation of CD38 regulates genetic pathways involved in proliferation and movement. Here we show that CD38 is enzymatically active in primary CLL cells and that its forced expression increases disease aggressiveness in a xenograft model. The effect is completely lost when using an enzyme-deficient version of CD38 with a single amino-acid mutation. Through the enzymatic conversion of NAD into ADPR (ADP-ribose) and cADPR (cyclic ADP-ribose), CD38 increases cytoplasmic Ca2+ concentrations, positively influencing proliferation and signaling mediated via chemokine receptors or integrins. Consistently, inhibition of the enzymatic activities of CD38 using the flavonoid kuromanin blocks CLL chemotaxis, adhesion and in vivo homing. In a short-term xenograft model using primary cells, kuromanin treatment traps CLL cells in the blood, thereby increasing responses to chemotherapy. These results suggest that monoclonal antibodies that block the enzymatic activities of CD38 or enzyme inhibitors may prove therapeutically useful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008; 88: 841–886.

    Article  CAS  PubMed  Google Scholar 

  2. Lee HC . Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 2012; 287: 31633–31640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 2001; 411: 595–599.

    Article  CAS  PubMed  Google Scholar 

  4. Cosker F, Cheviron N, Yamasaki M, Menteyne A, Lund FE, Moutin MJ et al. The ecto-enzyme CD38 is a nicotinic acid adenine dinucleotide phosphate (NAADP) synthase that couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J Biol Chem 2010; 285: 38251–38259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmid F, Fliegert R, Westphal T, Bauche A, Guse AH . Nicotinic acid adenine dinucleotide phosphate (NAADP) degradation by alkaline phosphatase. J Biol Chem 2012; 287: 32525–32534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okamoto H, Takasawa S, Nata K . The CD38-cyclic ADP-ribose signalling system in insulin secretion: molecular basis and clinical implications. Diabetologia 1997; 40: 1485–1491.

    Article  CAS  PubMed  Google Scholar 

  7. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M et al. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca(2+) signaling using CD38 knockout mice. J Biol Chem 2001; 276: 649–655.

    Article  CAS  PubMed  Google Scholar 

  8. Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 2001; 7: 1209–1216.

    Article  CAS  PubMed  Google Scholar 

  9. Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, Lund FE . Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 2004; 20: 279–291.

    Article  CAS  PubMed  Google Scholar 

  10. Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 2007; 446: 41–45.

    Article  CAS  PubMed  Google Scholar 

  11. Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC et al. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 2006; 349: 353–359.

    Article  CAS  PubMed  Google Scholar 

  12. Deaglio S, Vaisitti T, Aydin S, Ferrero E, Malavasi F . In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood 2006; 108: 1135–1144.

    Article  CAS  PubMed  Google Scholar 

  13. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  14. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N . CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118: 3470–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deaglio S, Capobianco A, Bergui L, Durig J, Morabito F, Duhrsen U et al. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003; 102: 2146–2155.

    Article  CAS  PubMed  Google Scholar 

  16. Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 2005; 105: 3042–3050.

    Article  CAS  PubMed  Google Scholar 

  17. Deaglio S, Aydin S, Grand MM, Vaisitti T, Bergui L, D'Arena G et al. CD38/CD31 interactions activate genetic pathways leading to proliferation and migration in chronic lymphocytic leukemia cells. Mol Med 2010; 16: 87–91.

    Article  CAS  PubMed  Google Scholar 

  18. Deaglio S, Vaisitti T, Aydin S, Bergui L, D'Arena G, Bonello L et al. CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood 2007; 110: 4012–4021.

    Article  CAS  PubMed  Google Scholar 

  19. Vaisitti T, Aydin S, Rossi D, Cottino F, Bergui L, D'Arena G et al. CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia 2010; 24: 958–969.

    Article  CAS  PubMed  Google Scholar 

  20. Zucchetto A, Vaisitti T, Benedetti D, Tissino E, Bertagnolo V, Rossi D et al. The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 2012; 26: 1301–1312.

    Article  CAS  PubMed  Google Scholar 

  21. Vaisitti T, Serra S, Pepper C, Rossi D, Laurenti L, Gaidano G et al. CD38 signals upregulate expression and functions of matrix metalloproteinase-9 in chronic lymphocytic leukemia cells. Leukemia 2013; 27: 1177–1181.

    Article  CAS  PubMed  Google Scholar 

  22. Pleyer L, Egle A, Hartmann TN, Greil R . Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol 2009; 6: 405–418.

    Article  CAS  PubMed  Google Scholar 

  23. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10: 37–50.

    Article  CAS  PubMed  Google Scholar 

  24. Deaglio S, Vaisitti T, Zucchetto A, Gattei V, Malavasi F . CD38 as a molecular compass guiding topographical decisions of chronic lymphocytic leukemia cells. Semin Cancer Biol 2010; 20: 416–423.

    Article  CAS  PubMed  Google Scholar 

  25. Vaisitti T, Audrito V, Serra S, Bologna C, Arruga F, Brusa D et al. Multiple metamorphoses of CD38 from prognostic marker to disease modifier to therapeutic target in chronic lymphocytic leukemia. Curr Top Med Chem 2013; 13: 2955–2964.

    Article  CAS  PubMed  Google Scholar 

  26. Hersher R . Companies wager high on CD38-targeting drugs for blood cancer. Nat Med 2012; 18: 1446.

    Article  CAS  PubMed  Google Scholar 

  27. Dolgin E . Cancer's true breakthroughs. Nat Med 2013; 19: 660–663.

    Article  CAS  PubMed  Google Scholar 

  28. Reichert JM . Antibodies to watch in 2014. MAbs 2013; 6: 799–802.

    Article  Google Scholar 

  29. Pearce L, Morgan L, Lin TT, Hewamana S, Matthews RJ, Deaglio S et al. Genetic modification of primary chronic lymphocytic leukemia cells with a lentivirus expressing CD38. Haematologica 2010; 95: 514–517.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A et al. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA 2007; 104: 5759–5764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruzzone S, De Flora A, Usai C, Graeff R, Lee HC . Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells. Biochem J 2003; 375: 395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zocchi E, Daga A, Usai C, Franco L, Guida L, Bruzzone S et al. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J Biol Chem 1998; 273: 8017–8024.

    Article  CAS  PubMed  Google Scholar 

  33. Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 1998; 160: 395–402.

    CAS  PubMed  Google Scholar 

  34. Serra S, Horenstein AL, Vaisitti T, Brusa D, Rossi D, Laurenti L et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 2011; 118: 6141–6152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H . Flavonoids as inhibitors of human CD38. Bioorg Med Chem Lett 2011; 21: 3939–3942.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Abady ZN, Durante B, Moody AJ, Billington RA . Large changes in NAD levels associated with CD38 expression during HL-60 cell differentiation. Biochem Biophys Res Commun 2013; 442: 51–55.

    Article  CAS  PubMed  Google Scholar 

  37. Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 2013; 62: 1084–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Budhraja A, Gao N, Zhang Z, Son YO, Cheng S, Wang X et al. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther 2012; 11: 132–142.

    Article  CAS  PubMed  Google Scholar 

  39. Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D, Lee HC . Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J Biol Chem 2000; 275: 21566–21571.

    Article  CAS  PubMed  Google Scholar 

  40. Deaglio S, Vaisitti T, Billington R, Bergui L, Omede P, Genazzani AA et al. CD38/CD19: a lipid raft-dependent signaling complex in human B cells. Blood 2007; 109: 5390–5398.

    Article  CAS  PubMed  Google Scholar 

  41. Kaucka M, Plevova K, Pavlova S, Janovska P, Mishra A, Verner J et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res 2013; 73: 1491–1501.

    Article  CAS  PubMed  Google Scholar 

  42. Magnone M, Bauer I, Poggi A, Mannino E, Sturla L, Brini M et al. NAD+ levels control Ca2+ store replenishment and mitogen-induced increase of cytosolic Ca2+ by Cyclic ADP-ribose-dependent TRPM2 channel gating in human T lymphocytes. J Biol Chem 2012; 287: 21067–21081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G et al. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J Immunol 2007; 179: 7827–7839.

    Article  CAS  PubMed  Google Scholar 

  44. Bustelo XR . Vav proteins, adaptors and cell signaling. Oncogene 2001; 20: 6372–6381.

    Article  CAS  PubMed  Google Scholar 

  45. Ibrahim S, Jilani I, O'Brien S, Rogers A, Manshouri T, Giles F et al. Clinical relevance of the expression of the CD31 ligand for CD38 in patients with B-cell chronic lymphocytic leukemia. Cancer 2003; 97: 1914–1919.

    Article  PubMed  Google Scholar 

  46. Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q . Crystal structure of human CD38 extracellular domain. Structure 2005; 13: 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  47. Bertilaccio MT, Scielzo C, Simonetti G, Ten Hacken E, Apollonio B, Ghia P et al. Xenograft models of chronic lymphocytic leukemia: problems, pitfalls and future directions. Leukemia 2013; 27: 534–540.

    Article  CAS  PubMed  Google Scholar 

  48. Arnon TI, Cyster JG . Blood, sphingosine-1-phosphate and lymphocyte migration dynamics in the spleen. Curr Top Microbiol Immunol 2014; 378: 107–128.

    CAS  PubMed  Google Scholar 

  49. Lange I, Penner R, Fleig A, Beck A . Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 2008; 44: 604–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Umar S, Malavasi F, Mehta K . Post-translational modification of CD38 protein into a high molecular weight form alters its catalytic properties. J Biol Chem 1996; 271: 15922–15927.

    Article  CAS  PubMed  Google Scholar 

  51. Moreau C, Liu Q, Graeff R, Wagner GK, Thomas MP, Swarbrick JM et al. CD38 structure-based inhibitor design using the 1-cyclic inosine 5'-diphosphate ribose template. PLoS One 2013; 8: e66247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Veer MS, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PW et al. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011; 96: 284–290.

    Article  CAS  PubMed  Google Scholar 

  53. Green DJ, Orgun NN, Jones JC, Hylarides MD, Pagel JM, Hamlin DK et al. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies. Cancer Res 2014; 74: 1179–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Lamusta and K Gizzi for excellent technical support. This work is dedicated to the memory of Christian Usseglio Mattiet. This work is supported by grants from the Italian Ministries of Education, University and Research (Futuro in Ricerca 2008 no. RBFR08ATLH and 2012 no. RBFR12D1CB, PRIN 2009 no. 2009LMEEEH_002), the Italian Ministry of Health (Bando Giovani Ricercatori 2008 no. GR-2008-1138053, GR-2010-2317594 and GR-2011-02349282), the Associazione Italiana per la Ricerca sul Cancro Foundation (IG 12754) and Cariplo Foundation (grant #2012-0689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Deaglio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaisitti, T., Audrito, V., Serra, S. et al. The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia 29, 356–368 (2015). https://doi.org/10.1038/leu.2014.207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.207

This article is cited by

Search

Quick links