Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Suppression of Pu.1 function results in expanded myelopoiesis in zebrafish

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Scott EW, Simon MC, Anastasi J, Singh H . Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 1994; 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  2. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003; 4: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  3. Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood 2012; 119: 5239–5249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dakic A, Wu L, Nutt SL . Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol 2007; 28: 108–114.

    Article  CAS  PubMed  Google Scholar 

  5. Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Otu HH et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 2006; 38: 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu X, Zhang H, Qian M, Zhao X, Yang W, Wang P et al. The significance of low PU.1 expression in patients with acute promyelocytic leukemia. J Hematol Oncol 2012; 5: 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD et al. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  8. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  9. Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S . Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 1486–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stoletov K, Klemke R . Catch of the day: zebrafish as a human cancer model. Oncogene 2008; 27: 4509–4520.

    Article  CAS  PubMed  Google Scholar 

  11. Orkin SH, Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL . PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 2005; 201: 1487–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pigneux A, Perreau V, Jourdan E, Vey N, Dastugue N, Huguet F et al. Adding lomustine to idarubicin and cytarabine for induction chemotherapy in older patients with acute myeloid leukemia: the BGMT 95 trial results. Haematologica 2007; 92: 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  14. Rabbani A, Finn RM, Ausio J . The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays 2005; 27: 50–56.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson KL, Smith KA, Pio F, Torbett BE, Maki RA . Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. Blood 1998; 92: 1576–1585.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.: 81270631; Grant No.: 31271564); the National Basic Research Program of China (Grant No.: 2012CB945102); Guangdong Province International Science and Technology Cooperation Program (Grant No.: 2010B05100017), Guangzhou Science and Technology Support Program (Grant No.: 11A62121172), and the General Research Fund from the Research Grants Council of HKSAR (Grant No.: HKUST6/CRF/09).

Author-contributions

JPS, WL, LL, JHC and MW designed the research, performed experiments and analyzed data. YYZ, AYL, WQZ, ZLW and WJL designed the research and analyzed data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Zhang, Z Wen or W Liao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Liu, W., Li, L. et al. Suppression of Pu.1 function results in expanded myelopoiesis in zebrafish. Leukemia 27, 1913–1917 (2013). https://doi.org/10.1038/leu.2013.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.67

This article is cited by

Search

Quick links