Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function

Abstract

Chronic lymphocytic leukemia (CLL) can be immunosuppressive in humans and mice, and CLL cells share multiple phenotypic markers with regulatory B cells that are competent to produce interleukin (IL)-10 (B10 cells). To identify functional links between CLL cells and regulatory B10 cells, the phenotypes and abilities of leukemia cells from 93 patients with overt CLL to express IL-10 were assessed. CD5+ CLL cells purified from 90% of the patients were IL-10-competent and secreted IL-10 following appropriate ex vivo stimulation. Serum IL-10 levels were also significantly elevated in CLL patients. IL-10-competent cell frequencies were higher among CLLs with IgVH mutations, and correlated positively with TCL1 expression. In the TCL1-transgenic (TCL1-Tg) mouse model of CLL, IL-10-competent B cells with the cell surface phenotype of B10 cells expanded significantly with age, preceding the development of overt, CLL-like leukemia. Malignant CLL cells in TCL1-Tg mice also shared immunoregulatory functions with mouse and human B10 cells. Serum IL-10 levels varied in TCL1-Tg mice, but in vivo low-dose lipopolysaccharide treatment induced IL-10 expression in CLL cells and high levels of serum IL-10. Thus, malignant IL-10-competent CLL cells exhibit regulatory functions comparable to normal B10 cells that may contribute to the immunosuppression observed in patients and TCL1-Tg mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 2002; 99: 4087–4093.

    Article  CAS  Google Scholar 

  3. Nordgren TM, Joshi SS . The etiology of chronic lymphocytic leukemia: another look at the relationship between B1 cells and CLL. Open Leuk J 2010; 3: 69–73.

    CAS  Google Scholar 

  4. Chiorazzi N, Ferrarini M . Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2011; 117: 1781–1791.

    Article  CAS  Google Scholar 

  5. Gorgun G, Holderried TA, Zahrieh D, Neuberg D, Gribben JG . Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest 2005; 115: 1797–1805.

    Article  Google Scholar 

  6. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  Google Scholar 

  7. Hamblin TJ . The TCL1 mouse as a model for chronic lymphocytic leukemia. Leuk Res 2010; 34: 135–136.

    Article  CAS  Google Scholar 

  8. Efanov A, Zanesi N, Nazaryan N, Santanam U, Palamarchuk A, Croce CM et al. CD5+CD23+ leukemic cell populations in TCL1 transgenic mice show significantly increased proliferation and Akt phosphorylation. Leukemia 2010; 24: 970–975.

    Article  CAS  Google Scholar 

  9. Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 2006; 108: 1334–1338.

    Article  CAS  Google Scholar 

  10. Yan XJ, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2006; 103: 11713–11718.

    Article  CAS  Google Scholar 

  11. Enzler T, Kater AP, Zhang W, Widhopf GF, Chuang HY, Lee J et al. Chronic lymphocytic leukemia of Eμ-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. Blood 2009; 114: 4469–4476.

    Article  CAS  Google Scholar 

  12. Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F et al. Eμ-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci USA 2009; 106: 6250–6255.

    Article  CAS  Google Scholar 

  13. Herling M, Patel KA, Khalili J, Schlette E, Kobayashi R, Medeiros LJ et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 2006; 20: 280–285.

    Article  CAS  Google Scholar 

  14. Browning RL, Geyer SM, Johnson AJ, Jelinek DF, Tschumper RC, Call TG et al. Expression of TCL-1 as a potential prognostic factor for treatment outcome in B-cell chronic lymphocytic leukemia. Leuk Res 2007; 31: 1737–1740.

    Article  CAS  Google Scholar 

  15. Iwata Y, Matsushita T, Horikawa M, DiLillo DJ, Yanaba K, Venturi GM et al. Characterization of a rare IL-10-competent B cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117: 530–541.

    Article  CAS  Google Scholar 

  16. Yanaba K, Bouaziz J-D, Haas KM, Poe JC, Fujimoto M, Tedder TF . A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008; 28: 639–650.

    Article  CAS  Google Scholar 

  17. Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF . Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 2008; 118: 3420–3430.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. DiLillo DJ, Matsushita T, Tedder TF . B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann NY Acad Sci 2010; 1183: 38–57.

    Article  CAS  Google Scholar 

  19. Ray A, Basu S, Williams CB, Salzman NH, Dittel BN . A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand. J Immunol 2012; 188: 3188–3198.

    Article  CAS  Google Scholar 

  20. Yanaba K, Bouaziz J-D, Matsushita T, Tsubata T, Tedder TF . The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J Immunol 2009; 182: 7459–7472.

    Article  CAS  Google Scholar 

  21. Haas KM, Watanabe R, Matsushita T, Nakashima H, Ishiura N, Okochi H et al. Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. J Immunol 2010; 184: 4789–4800.

    Article  CAS  Google Scholar 

  22. Spencer NF, Daynes RA . IL-12 directly stimulates expression of IL-10 by CD5+ B cells and IL-6 by both CD5+ and CD5− B cells: possible involvement in age-associated cytokine dysregulation. Int Immunol 1997; 9: 745–754.

    Article  CAS  Google Scholar 

  23. Brummel R, Lenert P . Activation of marginal zone B cells from lupus mice with type A(D) CpG-oligodeoxynucleotides. J Immunol 2005; 174: 2429–2434.

    Article  CAS  Google Scholar 

  24. Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 2007; 178: 7868–7878.

    Article  CAS  Google Scholar 

  25. Bouaziz J-D, Yanaba K, Tedder TF . Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008; 224: 201–214.

    Article  CAS  Google Scholar 

  26. Matsushita T, Horikawa M, Iwata Y, Tedder TF . Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling EAE initiation and late-phase immunopathogenesis. J Immunol 2010; 185: 2240–2252.

    Article  CAS  Google Scholar 

  27. Horikawa M, Minard-Colin V, Matsushita T, Tedder TF . Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest 2011; 121: 4268–4280.

    Article  CAS  Google Scholar 

  28. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  Google Scholar 

  29. Volkheimer AD, Weinberg JB, Beasley BE, Whitesides JF, Gockerman JP, Moore JO et al. Progressive immunoglobulin gene mutations in chronic lymphocytic leukemia: evidence for antigen-driven intraclonal diversification. Blood 2007; 109: 1559–1567.

    Article  CAS  Google Scholar 

  30. Kang SM, Narducci MG, Lazzeri C, Mongiovi AM, Caprini E, Bresin A et al. Impaired T- and B-cell development in Tcl1-deficient mice. Blood 2005; 105: 1288–1294.

    Article  CAS  Google Scholar 

  31. Zhou L-J, Smith HM, Waldschmidt TJ, Schwarting R, Daley J, Tedder TF . Tissue-specific expression of the human CD19 gene in transgenic mice inhibits antigen-independent B lymphocyte development. Mol Cell Biol 1994; 14: 3884–3894.

    Article  CAS  Google Scholar 

  32. Matsushita T, Tedder TF . Identifying regulatory B cells (B10 cells) that produce IL-10. Methods Mol Biol 2011; 677: 99–111.

    Article  CAS  Google Scholar 

  33. Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA et al. Mouse CD20 expression and function. Int Immunol 2004; 16: 119–129.

    Article  CAS  Google Scholar 

  34. Haas KM, Sen S, Sanford IG, Miller AS, Poe JC, Tedder TF . CD22 ligand binding regulates normal and malignant B lymphocyte survival in vivo. J Immunol 2006; 177: 3063–3073.

    Article  CAS  Google Scholar 

  35. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O et al. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 2010; 401: 318–320.

    Article  CAS  Google Scholar 

  36. Kitabayashi A, Hirokawa M, Miura AB . The role of interleukin-10 (IL-10) in chronic B-lymphocytic leukemia: IL-10 prevents leukemic cells from apoptotic cell death. Int J Hematol 1995; 62: 99–106.

    Article  CAS  Google Scholar 

  37. Fayad L, Keating MJ, Reuben JM, O′Brien S, Lee BN, Lerner S et al. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 2001; 97: 256–263.

    Article  CAS  Google Scholar 

  38. Knauf WU, Ehlers B, Bisson S, Thiel E . Serum levels of interleukin-10 in B-cell chronic lymphocytic leukemia. Blood 1995; 86: 4382–4383.

    CAS  PubMed  Google Scholar 

  39. Ramachandra S, Metcalf RA, Fredrickson T, Marti GE, Raveche E . Requirement for increased IL-10 in the development of B-1 lymphoproliferative disease in a murine model of CLL. J Clin Invest 1996; 98: 1788–1793.

    Article  CAS  Google Scholar 

  40. Minard-Colin V, Xiu Y, Poe JC, Horikawa M, Hamaguchi Y, Haas KM et al. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcγRI, FcγRIII, and FcγRIV. Blood 2008; 112: 1205–1213.

    Article  CAS  Google Scholar 

  41. Moore KW, de Waal Malefyt R, Coffman RL, O′Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  Google Scholar 

  42. de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 1991; 174: 915–924.

    Article  CAS  Google Scholar 

  43. Matutes E, Wechsler A, Gomez R, Cherchi M, Catovsky D . Unusual T-cell phenotype in advanced B-chronic lymphocytic leukaemia. Br J Haematol 1981; 49: 635–642.

    Article  CAS  Google Scholar 

  44. Chiorazzi N, Fu SM, Montazeri G, Kunkel HG, Rai K, Gee T . T cell helper defect in patients with chronic lymphocytic leukemia. J Immunol 1979; 122: 1087–1090.

    CAS  PubMed  Google Scholar 

  45. Lauria F, Foa R, Mantovani V, Fierro MT, Catovsky D, Tura S . T-cell functional abnormality in B-chronic lymphocytic leukaemia: evidence of a defect of the T-helper subset. Br J Haematol 1983; 54: 277–283.

    Article  CAS  Google Scholar 

  46. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  Google Scholar 

  47. Motta M, Rassenti L, Shelvin BJ, Lerner S, Kipps TJ, Keating MJ et al. Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia 2005; 19: 1788–1793.

    Article  CAS  Google Scholar 

  48. Pekarsky Y, Zanesi N, Aqeilan RI, Croce CM . Animal models for chronic lymphocytic leukemia. J Cell Biochem 2007; 100: 1109–1118.

    Article  CAS  Google Scholar 

  49. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638.

    Article  CAS  Google Scholar 

  50. Hodgson K, Ferrer G, Montserrat E, Moreno C . Chronic lymphocytic leukemia and autoimmunity: a systematic review. Haematologica 2011; 96: 752–761.

    Article  CAS  Google Scholar 

  51. Maseda D, Smith SH, DiLillo DJ, Bryant JM, Candando KM, Weaver CT et al. Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J Immunol 2012; 188: 1036–1048.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Barbara Goodman for CLL cytogenetic analyses, Dr Jonathan Poe for suggestions and data analysis and Robert Streilein for patient’s cell preparations. These studies were supported by grants from the NIH (AI56363 and Southeastern Regional Center of Excellence for Emerging Infections and Biodefense (U54 AI057157)), the Lymphoma Research Foundation (to TFT), the Leukemia and Lymphoma Society and VA Research Service (to JBW), and the Associazione Italiana per la Ricerca sul Cancro (to GR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T F Tedder.

Ethics declarations

Competing interests

TFT is a consultant and shareholder for Angelica Therapeutics Inc. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiLillo, D., Weinberg, J., Yoshizaki, A. et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 27, 170–182 (2013). https://doi.org/10.1038/leu.2012.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.165

Keywords

Search

Quick links