Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapy

CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression

Abstract

Ecotropic viral integration site 1 (EVI1) is an oncogenic transcription factor in human acute myeloid leukemia (AML) with chromosomal alterations at 3q26. Because a high expression of EVI1 protein in AML cells predicts resistance to chemotherapy with a poor outcome, we have searched for molecular targets that will treat these patients with AML. In this study, we determined that CD52, which is mainly expressed on lymphocytes, is highly expressed in most cases of AML with a high EVI1 expression (EVI1High). CAMPATH-1H, a humanized monoclonal antibody against CD52, has been used to prevent graft-versus-host disease and treat CD52-positive lymphoproliferative disorders. Here, we investigated the antitumor effect of CAMPATH-1H on EVI1High AML cells. CAMPATH-1H significantly inhibited cell growth and induced apoptosis in CD52-positive EVI1High leukemia cells. Furthermore, CAMPATH-1H induced complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity against CD52-positive EVI1High leukemia cells. After an intravenous injection of CAMPATH-1H into NOD/Shi-scid/IL-2Rγ;null mice with subcutaneous engraftment of EVI1High leukemia cells, tumor growth rates were significantly reduced, and the mice survived longer than those in the phosphate-buffered saline-injected control group. Thus, CAMPATH-1H is a potential therapeutic antibody for the treatment of patients with EVI1High leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN . Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 1988; 54: 831–840.

    Article  CAS  Google Scholar 

  2. Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse III HC, Jenkins NA et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988; 8: 301–308.

    Article  CAS  Google Scholar 

  3. Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA 1992; 89: 3937–3941.

    Article  CAS  Google Scholar 

  4. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 1994; 13: 504–510.

    Article  CAS  Google Scholar 

  5. Lugthart S, Groschel S, Beverloo HB, Kayser S, Valk PJ, van Zelderen-Bhola SL et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 2010; 28: 3890–3898.

    Article  Google Scholar 

  6. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    Article  Google Scholar 

  7. Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008; 111: 4329–4337.

    Article  CAS  Google Scholar 

  8. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 2010; 28: 2101–2107.

    Article  Google Scholar 

  9. Xia MQ, Tone M, Packman L, Hale G, Waldmann H . Characterization of the CAMPATH-1 (CDw52) antigen: biochemical analysis and cDNA cloning reveal an unusually small peptide backbone. Eur J Immunol 1991; 21: 1677–1684.

    Article  CAS  Google Scholar 

  10. Valentin H, Gelin C, Coulombel L, Zoccola D, Morizet J, Bernard A . The distribution of the CDW52 molecule on blood cells and characterization of its involvement in T cell activation. Transplantation 1992; 54: 97–104.

    Article  CAS  Google Scholar 

  11. Xia MQ, Hale G, Lifely MR, Ferguson MA, Campbell D, Packman L et al. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J 1993; 293: 633–640.

    Article  CAS  Google Scholar 

  12. Osterborg A, Dyer MJ, Bunjes D, Pangalis GA, Bastion Y, Catovsky D et al. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. J Clin Oncol 1997; 15: 1567–1574.

    Article  CAS  Google Scholar 

  13. Rodig SJ, Abramson JS, Pinkus GS, Treon SP, Dorfman DM, Dong HY et al. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 2006; 12: 7174–7179.

    Article  CAS  Google Scholar 

  14. Tibes R, Keating MJ, Ferrajoli A, Wierda W, Ravandi F, Garcia-Manero G et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer 2006; 106: 2645–2651.

    Article  CAS  Google Scholar 

  15. Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, Byrd JC . Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene 2007; 26: 3644–3653.

    Article  CAS  Google Scholar 

  16. Hale C, Bartholomew M, Taylor V, Stables J, Topley P, Tite J . Recognition of CD52 allelic gene products by CAMPATH-1H antibodies. Immunology 1996; 88: 183–190.

    Article  CAS  Google Scholar 

  17. Hale G . The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy 2001; 3: 137–143.

    Article  CAS  Google Scholar 

  18. Zent CS, Chen JB, Kurten RC, Kaushal GP, Lacy HM, Schichman SA . Alemtuzumab (CAMPATH 1H) does not kill chronic lymphocytic leukemia cells in serum free medium. Leuk Res 2004; 28: 495–507.

    Article  CAS  Google Scholar 

  19. Golay J, Cortiana C, Manganini M, Cazzaniga G, Salvi A, Spinelli O et al. The sensitivity of acute lymphoblastic leukemia cells carrying the t(12;21) translocation to campath-1H-mediated cell lysis. Haematologica 2006; 91: 322–330.

    CAS  PubMed  Google Scholar 

  20. Greenwood J, Clark M, Waldmann H . Structural motifs involved in human IgG antibody effector functions. Eur J Immunol 1993; 23: 1098–1104.

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhang M, Goldman CK, Ravetch JV, Waldmann TA . Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Res 2003; 63: 6453–6457.

    CAS  PubMed  Google Scholar 

  22. Golay J, Manganini M, Rambaldi A, Introna M . Effect of alemtuzumab on neoplastic B cells. Haematologica 2004; 89: 1476–1483.

    CAS  PubMed  Google Scholar 

  23. Stanglmaier M, Reis S, Hallek M . Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 2004; 83: 634–645.

    Article  CAS  Google Scholar 

  24. Mone AP, Cheney C, Banks AL, Tridandapani S, Mehter N, Guster S et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia 2006; 20: 272–279.

    Article  CAS  Google Scholar 

  25. Oval J, Smedsrud M, Taetle R . Expression and regulation of the evi-1 gene in the human factor-dependent leukemia cell line, UCSD/AML1. Leukemia 1992; 6: 446–451.

    CAS  PubMed  Google Scholar 

  26. Oval J, Jones OW, Montoya M, Taetle R . Characterization of a factor-dependent acute leukemia cell line with translocation (3;3)(q21;q26). Blood 1990; 76: 1369–1374.

    CAS  PubMed  Google Scholar 

  27. Strefford JC, Foot NJ, Chaplin T, Neat MJ, Oliver RT, Young BD et al. The characterisation of the lymphoma cell line U937, using comparative genomic hybridisation and multiplex FISH. Cytogenet Cell Genet 2001; 94: 9–14.

    Article  CAS  Google Scholar 

  28. Gribble SM, Roberts I, Grace C, Andrews KM, Green AR, Nacheva EP . Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization. Cancer Genet Cytogenet 2000; 118: 1–8.

    Article  CAS  Google Scholar 

  29. Koeffler HP, Billing R, Lusis AJ, Sparkes R, Golde DW . An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1). Blood 1980; 56: 265–273.

    CAS  PubMed  Google Scholar 

  30. MacLeod RA, Dirks WG, Drexler HG . Early contamination of the Dami cell line by HEL. Blood 1997; 90: 2850–2851.

    CAS  PubMed  Google Scholar 

  31. Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S et al. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 1979; 54: 713–733.

    CAS  PubMed  Google Scholar 

  32. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K . Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26: 171–176.

    Article  CAS  Google Scholar 

  33. Hamaguchi H, Suzukawa K, Nagata K, Yamamoto K, Yagasaki F, Morishita K . Establishment of a novel human myeloid leukaemia cell line (HNT-34) with t(3;3)(q21;q26), t(9;22)(q34;q11) and the expression of EVI1 gene, P210 and P190 BCR/ABL chimaeric transcripts from a patient with AML after MDS with 3q21q26 syndrome. Br J Haematol 1997; 98: 399–407.

    Article  CAS  Google Scholar 

  34. Matsuo Y, Adachi T, Tsubota T, Imanishi J, Minowada J . Establishment and characterization of a novel megakaryoblastic cell line, MOLM-1, from a patient with chronic myelogenous leukemia. Hum Cell 1991; 4: 261–264.

    CAS  PubMed  Google Scholar 

  35. Asou H, Suzukawa K, Kita K, Nakase K, Ueda H, Morishita K et al. Establishment of an undifferentiated leukemia cell line (Kasumi-3) with t(3;7)(q27;q22) and activation of the EVI1 gene. Jpn J Cancer Res 1996; 87: 269–274.

    Article  CAS  Google Scholar 

  36. Suzukawa K, Kodera T, Shimizu S, Nagasawa T, Asou H, Kamada N et al. Activation of EVI1 transcripts with chromosomal translocation joining the TCRVbeta locus and the EVI1 gene in human acute undifferentiated leukemia cell line (Kasumi-3) with a complex translocation of der(3)t(3;7;8). Leukemia 1999; 13: 1359–1366.

    Article  CAS  Google Scholar 

  37. Abo J, Inokuchi K, Dan K, Nomura T . p53 and N-ras mutations in two new leukemia cell lines established from a patient with multilineage CD7-positive acute leukemia. Blood 1993; 82: 2829–2836.

    CAS  PubMed  Google Scholar 

  38. Hamaguchi H, Nagata K, Yamamoto K, Fujikawa I, Kobayashi M, Eguchi M . Establishment of a novel human myeloid leukaemia cell line (FKH-1) with t(6;9)(p23;q34) and the expression of dek-can chimaeric transcript. Br J Haematol 1998; 102: 1249–1256.

    Article  CAS  Google Scholar 

  39. Hamaguchi H, Inokuchi K, Nara N, Nagata K, Yamamoto K, Yagasaki F et al. Alterations in the colorectal carcinoma gene and protein in a novel human myeloid leukemia cell line with trisomy 18 established from overt leukemia after myelodysplastic syndrome. Int J Hematol 1998; 67: 153–164.

    Article  CAS  Google Scholar 

  40. Pawson R, Dyer MJ, Barge R, Matutes E, Thornton PD, Emmett E et al. Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J Clin Oncol 1997; 15: 2667–2672.

    Article  CAS  Google Scholar 

  41. Piccaluga PP, Agostinelli C, Righi S, Zinzani PL, Pileri SA . Expression of CD52 in peripheral T-cell lymphoma. Haematologica 2007; 92: 566–567.

    Article  Google Scholar 

  42. Geissinger E, Bonzheim I, Roth S, Rosenwald A, Muller-Hermelink HK, Rudiger T . CD52 expression in peripheral T-cell lymphomas determined by combined immunophenotyping using tumor cell specific T-cell receptor antibodies. Leuk Lymphoma 2009; 50: 1010–1016.

    Article  CAS  Google Scholar 

  43. Lugthart S, Gröschel S, Beverloo HB, Kayser S, Valk PJ, van Zelderen-Bhola SL et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J Clin Oncol 2010; 28: 3890–3898.

    Article  Google Scholar 

  44. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    Article  CAS  Google Scholar 

  45. Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 2005; 24: 1976–1987.

    Article  CAS  Google Scholar 

  46. Treumann A, Lifely MR, Schneider P, Ferguson MA . Primary structure of CD52. J Biol Chem 1995; 270: 6088–6099.

    Article  CAS  Google Scholar 

  47. Ermini L, Secciani F, La Sala GB, Sabatini L, Fineschi D, Hale G et al. Different glycoforms of the human GPI-anchored antigen CD52 associate differently with lipid microdomains in leukocytes and sperm membranes. Biochem Biophys Res Commun 2005; 338: 1275–1283.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Genzyme for providing the CAMPATH-1H antibody for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Morishita.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Nakahata, S., Yamakawa, N. et al. CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression. Leukemia 25, 921–931 (2011). https://doi.org/10.1038/leu.2011.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.36

Keywords

This article is cited by

Search

Quick links