Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis

Abstract

Hedgehog (Hh) is a developmental signaling pathway in which Hh ligands bind Patched (Ptch), which relieves its inhibition of Smoothened (Smo), allowing the Gli family of transcription factors to translocate to the nucleus and activate Hh target genes. The role of Hh signaling in hematopoiesis is controversial and ill defined. Although some groups observed self-renewal defects with decreased replating and reduced efficiency of secondary murine transplants, other groups reported no hematopoietic phenotypes, which may be related to the timing of Hh abrogation. In malignant hematopoiesis, most attention has been focused on the role of Hh signaling in chronic myeloid leukemia (CML), considered by many to be a stem cell disorder that bears the constitutively active BCR-ABL tyrosine kinase. Despite the elimination of most leukemia cells through BCR-ABL inhibition, most patients remain PCR positive, suggesting that the putative CML stem cell may be resistant to kinase antagonism. Groups are now exploring the Hh pathway as an alternate pathway supporting CML stem cell survival. Knockdown or inhibition of Smo abrogates or delays the appearance of CML in several in vitro and in vivo models. These data have lead to clinical trials using BCR-ABL kinase and novel Smo inhibitors in combination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Nusslein-Volhard C, Wieschaus E . Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287: 795–801.

    Article  CAS  PubMed  Google Scholar 

  2. Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles. Genes Dev 2001; 15: 3059–3087.

    CAS  PubMed  Google Scholar 

  3. Ahn S, Joyner AL . In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 2005; 437: 894–897.

    CAS  PubMed  Google Scholar 

  4. Beachy PA, Karhadkar SS, Berman DM . Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324–331.

    CAS  PubMed  Google Scholar 

  5. Wang Y, Zhou Z, Walsh CT, McMahon AP . Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci USA 2009; 106: 2623–2628.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Milenkovic L, Scott MP, Rohatgi R . Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 2009; 187: 365–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Taipale J, Cooper MK, Maiti T, Beachy PA . Patched acts catalytically to suppress the activity of Smoothened. Nature 2002; 418: 892–897.

    CAS  PubMed  Google Scholar 

  8. Corcoran RB, Scott MP . Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 2006; 103: 8408–8413.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F . Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 2007; 282: 8959–8968.

    CAS  PubMed  Google Scholar 

  10. Lee J, Platt KA, Censullo P, Ruiz i Altaba A . Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124: 2537–2552.

    CAS  PubMed  Google Scholar 

  11. Ikram MS, Neill GW, Regl G, Eichberger T, Frischauf AM, Aberger F et al. GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter. J Invest Dermatol 2004; 122: 1503–1509.

    CAS  PubMed  Google Scholar 

  12. Teglund S, Toftgard R . Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 2010; 1805: 181–208.

    CAS  PubMed  Google Scholar 

  13. Lim Y, Matsui W . Hedgehog signaling in hematopoiesis. Crit Rev Eukaryot Gene Expr 2010; 20: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Farrington SM, Belaoussoff M, Baron MH . Winged-helix, Hedgehog and Bmp genes are differentially expressed in distinct cell layers of the murine yolk sac. Mech Dev 1997; 62: 197–211.

    CAS  PubMed  Google Scholar 

  15. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH . Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 2001; 128: 1717–1730.

    CAS  PubMed  Google Scholar 

  16. St-Jacques B, Hammerschmidt M, McMahon AP . Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13: 2072–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang XM, Ramalho-Santos M, McMahon AP . Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 2001; 106: 781–792.

    CAS  PubMed  Google Scholar 

  18. Byrd N, Becker S, Maye P, Narasimhaiah R, St-Jacques B, Zhang X et al. Hedgehog is required for murine yolk sac angiogenesis. Development 2002; 129: 361–372.

    CAS  PubMed  Google Scholar 

  19. Astorga J, Carlsson P . Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development 2007; 134: 3753–3761.

    CAS  PubMed  Google Scholar 

  20. Cridland SO, Keys JR, Papathanasiou P, Perkins AC . Indian hedgehog supports definitive erythropoiesis. Blood Cells Mol Dis 2009; 43: 149–155.

    CAS  PubMed  Google Scholar 

  21. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 1996; 86: 897–906.

    CAS  PubMed  Google Scholar 

  22. Peeters M, Ottersbach K, Bollerot K, Orelio C, de Bruijn M, Wijgerde M et al. Ventral embryonic tissues and Hedgehog proteins induce early AGM hematopoietic stem cell development. Development 2009; 136: 2613–2621.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gering M, Patient R . Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. Dev Cell 2005; 8: 389–400.

    CAS  PubMed  Google Scholar 

  24. Trowbridge JJ, Scott MP, Bhatia M . Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 2006; 103: 14134–14139.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 2008; 14: 238–249.

    CAS  PubMed  Google Scholar 

  26. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Merchant A, Joseph G, Wang Q, Brennan S, Matsui W . Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood 2010; 115: 2391–2396.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2: 172–180.

    CAS  PubMed  Google Scholar 

  29. Gao J, Graves S, Koch U, Liu S, Jankovic V, Buonamici S et al. Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 2009; 4: 548–558.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell 2009; 4: 559–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ et al. Identification of an amplified, highly expressed gene in a human glioma. Science 1987; 236: 70–73.

    CAS  PubMed  Google Scholar 

  32. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–851.

    CAS  PubMed  Google Scholar 

  33. Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391: 90–92.

    CAS  PubMed  Google Scholar 

  34. Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 1997; 57: 2085–2088.

    CAS  PubMed  Google Scholar 

  35. Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2009; 1: 338–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh RR, Kim JE, Davuluri Y, Drakos E, Cho-Vega JH, Amin HM et al. Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferation. Leukemia 2010; 24: 1025–1036.

    CAS  PubMed  Google Scholar 

  37. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425: 846–851.

    CAS  PubMed  Google Scholar 

  38. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431: 707–712.

    CAS  PubMed  Google Scholar 

  39. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165–172.

    CAS  PubMed  Google Scholar 

  40. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25: 2524–2533.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Theunissen JW, de Sauvage FJ . Paracrine Hedgehog signaling in cancer. Cancer Res 2009; 69: 6007–6010.

    CAS  PubMed  Google Scholar 

  42. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008; 455: 406–410.

    CAS  PubMed  Google Scholar 

  43. Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 2009; 106: 4254–4259.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dierks C, Grbic J, Zirlik K, Beigi R, Englund NP, Guo GR et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007; 13: 944–951.

    CAS  PubMed  Google Scholar 

  46. Singh RR, Cho-Vega JH, Davuluri Y, Ma S, Kasbidi F, Milito C et al. Sonic hedgehog signaling pathway is activated in ALK-positive anaplastic large cell lymphoma. Cancer Res 2009; 69: 2550–2558.

    CAS  PubMed  Google Scholar 

  47. Lin TL, Wang QH, Brown P, Peacock C, Merchant AA, Brennan S et al. Self-renewal of acute lymphocytic leukemia cells is limited by the hedgehog pathway inhibitors cyclopamine and IPI-926. PLoS One 2010; 5: e15262.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    CAS  PubMed  Google Scholar 

  49. Rowley JD . Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    CAS  PubMed  Google Scholar 

  50. Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts van Kessel A, Bootsma D et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1983; 306: 277–280.

    CAS  PubMed  Google Scholar 

  51. Ramaraj P, Singh H, Niu N, Chu S, Holtz M, Yee JK et al. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res 2004; 64: 5322–5331.

    CAS  PubMed  Google Scholar 

  52. Zhao RC, Jiang Y, Verfaillie CM . A model of human p210(bcr/ABL)-mediated chronic myelogenous leukemia by transduction of primary normal human CD34(+) cells with a BCR/ABL-containing retroviral vector. Blood 2001; 97: 2406–2412.

    CAS  PubMed  Google Scholar 

  53. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  PubMed  Google Scholar 

  54. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    PubMed  Google Scholar 

  55. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 2009; 23: 1054–1061.

    CAS  PubMed  Google Scholar 

  56. Colombat M, Fort MP, Chollet C, Marit G, Roche C, Preudhomme C et al. Molecular remission in chronic myeloid leukemia patients with sustained complete cytogenetic remission after imatinib mesylate treatment. Haematologica 2006; 91: 162–168.

    CAS  PubMed  Google Scholar 

  57. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    CAS  PubMed  Google Scholar 

  58. Fialkow PJ, Jacobson RJ, Papayannopoulou T . Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63: 125–130.

    CAS  PubMed  Google Scholar 

  59. Levin RH, Whang J, Tjio JH, Carbone PP, Frei III E, Freireich EJ . Persistent mitosis of transfused homologous leukocytes in children receiving antileukemic therapy. Science 1963; 142: 1305–1311.

    CAS  PubMed  Google Scholar 

  60. Graw Jr RG, Buckner CD, Whang-Peng J, Leventhal BG, Kruger G, Berard C et al. Complication of bone-marrow transplantation. Graft-versus-host disease resulting from chronic-myelogenous-leukaemia leucocyte transfusions. Lancet 1970; 2: 338–341.

    PubMed  Google Scholar 

  61. Sirard C, Lapidot T, Vormoor J, Cashman JD, Doedens M, Murdoch B et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 1996; 87: 1539–1548.

    CAS  PubMed  Google Scholar 

  62. Wang JC, Lapidot T, Cashman JD, Doedens M, Addy L, Sutherland DR et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 1998; 91: 2406–2414.

    CAS  PubMed  Google Scholar 

  63. Holyoake T, Jiang X, Eaves C, Eaves A . Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999; 94: 2056–2064.

    CAS  PubMed  Google Scholar 

  64. Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O’Brien S et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 2006; 20: 1767–1773.

    CAS  PubMed  Google Scholar 

  65. le Coutre P, Kreuzer KA, Pursche S, Bonin M, Leopold T, Baskaynak G et al. Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 2004; 53: 313–323.

    CAS  PubMed  Google Scholar 

  66. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007; 109: 3496–3499.

    CAS  PubMed  Google Scholar 

  67. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, Cleris L et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 2000; 92: 1641–1650.

    CAS  PubMed  Google Scholar 

  68. Jorgensen HG, Elliott MA, Allan EK, Carr CE, Holyoake TL, Smith KD . Alpha1-acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood 2002; 99: 713–715.

    CAS  PubMed  Google Scholar 

  69. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079.

    CAS  PubMed  Google Scholar 

  70. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003; 101: 2368–2373.

    CAS  PubMed  Google Scholar 

  71. Thomas J, Wang L, Clark RE, Pirmohamed M . Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004; 104: 3739–3745.

    CAS  PubMed  Google Scholar 

  72. Galimberti S, Cervetti G, Guerrini F, Testi R, Pacini S, Fazzi R et al. Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during Imatinib treatment. Cancer Genet Cytogenet 2005; 162: 57–62.

    CAS  PubMed  Google Scholar 

  73. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC . Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370–1373.

    CAS  PubMed  Google Scholar 

  74. Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE . hOCT 1 and resistance to imatinib. Blood 2005; 106: 1133–1134; author reply 1134.

    CAS  PubMed  Google Scholar 

  75. Komarova NL, Wodarz D . Effect of cellular quiescence on the success of targeted CML therapy. PLoS One 2007; 2: e990.

    PubMed  PubMed Central  Google Scholar 

  76. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL et al. Dynamics of chronic myeloid leukaemia. Nature 2005; 435: 1267–1270.

    CAS  PubMed  Google Scholar 

  77. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M . Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 2006; 12: 1181–1184.

    CAS  PubMed  Google Scholar 

  78. Holtz MS, Forman SJ, Bhatia R . Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 2005; 19: 1034–1041.

    CAS  PubMed  Google Scholar 

  79. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    CAS  PubMed  Google Scholar 

  80. Chen Y, Peng C, Sullivan C, Li D, Li S . Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia 2010; 24: 1545–1554.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Quintas-Cardama A, Kantarjian HM, Cortes JE . Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 2009; 16: 122–131.

    PubMed  Google Scholar 

  82. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ . Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

    CAS  PubMed  Google Scholar 

  83. Irvine DA, Zhang B, Allan EK, Holyoake T, Dorsch M, Manley P et al. Combination of hedgehog pathway inhibitor LDE225 and nilotinib eliminates chronic myeloid leukemia stem and progenitor cells. Blood (ASH) 2009; abstract no. 1428.

  84. Zhang B, Irvine DA, Wei Ho Y, Buonamici S, Manley P, Holyoake T et al. Inhibiton of chronic myeloid leukemia stem cells by the combination of the hoedgehog pathway inhibitor LDE225 with nilotinib. Blood (ASH) 2010; abstract no. 514.

  85. Schairer A, Shih A, Geron I, Reya T, Levin WJ, Arsdale TV et al. Human blast crisis leukemia stem cell inhibition with a novel smoothened antagonist. Blood (ASH) 2010; abstract no. 1223.

  86. Cea M, Cagnetta A, Cirmena G, Garuti A, Rocco I, Palermo C et al. Hedgehog signaling is useful as a novel molecular marker for predicting relapses and resistance during chronic myeloid leukemia treatment. Blood (ASH) 2010; abstract no. 1215.

  87. Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 2003; 100: 4616–4621.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 2009; 361: 1164–1172.

    CAS  PubMed  Google Scholar 

  89. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361: 1173–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326: 572–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett 2010; 1: 130–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ahnert JR, Baselga J, Tawbi H, Shou Y, Dummer R, Feng W et al. LDE225, a smoothened (SMO) antagonist: phase I safety and pharmacologic results in patients with advance tumors. Ann Oncol (ESMO) 2010; abstract no. 502PD.

  93. Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2010; 2: 51ra70.

    PubMed  PubMed Central  Google Scholar 

  94. Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC et al. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 2009; 52: 4400–4418.

    CAS  PubMed  Google Scholar 

  95. Rudin CM, Weiss GJ, Chang A, Gettinger S, Miller WH, Eigl B et al. A phase 1 study of IPI-926, an inhibitor of the hedgehog pathway, in patients (PTS) with advance or metastasis solid tumors. Ann Oncol (ESMO) 2010; abstract no. 501PD.

  96. Siu LL, Papadopoulos K, Alberts SR, Kirchoff-Ross R, Vakkalagadda B, Lang L et al. A first-in-human, phase I study of an oral hedgehog (HH) pathway antagonist, BMS-833923 (XL139), in subjects with advanced or metastatic solid tumors. J Clin Oncol (ASCO) 2010; abstract no. 2501.

Download references

Acknowledgements

We thank the Smoothened team and Yao Yung-mae at Novartis for stimulating discussions and critical reading of the manuscript. IA is supported by the National Institutes of Health (RO1CA133379, RO1CA105129, R21CA141399 and RO1CA149655 to IA), the Leukemia & Lymphoma Society and the American Cancer Society (RSG0806801 to IA). IA is a Howard Hughes Medical Institute Early Career Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Buonamici.

Ethics declarations

Competing interests

SB and DA are employee of Novartis Institute of BioMedical Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mar, B., Amakye, D., Aifantis, I. et al. The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis. Leukemia 25, 1665–1673 (2011). https://doi.org/10.1038/leu.2011.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.143

Keywords

This article is cited by

Search

Quick links