Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Novel insight into stem cell mobilization-Plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex

Abstract

The complement cascade (CC) becomes activated and its cleavage fragments play a crucial role in the mobilization of hematopoietic stem/progenitor cells (HSPCs). Here, we sought to determine which major chemoattractant present in peripheral blood (PB) is responsible for the egress of HSPCs from the bone marrow (BM). We noticed that normal and mobilized plasma strongly chemoattracts HSPCs in a stromal-derived factor-1 (SDF-1)-independent manner because (i) plasma SDF-1 level does not correlate with mobilization efficiency; (ii) the chemotactic plasma gradient is not affected in the presence of AMD3100 and (iii) it is resistant to denaturation by heat. Surprisingly, the observed loss of plasma chemotactic activity after charcoal stripping suggested the involvement of bioactive lipids and we focused on sphingosine-1-phosphate (S1P), a known chemoattracant of HSPCs. We found that S1P (i) creates in plasma a continuously present gradient for BM-residing HSPCs; (ii) is at physiologically relevant concentrations a chemoattractant several magnitudes stronger than SDF-1 and (iii) its plasma level increases during mobilization due to CC activation and interaction of the membrane attack complex (MAC) with erythrocytes that are a major reservoir of S1P. We conclude and propose a new paradigm that S1P is a crucial chemoattractant for BM-residing HSPCs and that CC through MAC induces the release of S1P from erythrocytes for optimal egress/mobilization of HSPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Welner RS, Kincade PW . Stem cells on patrol. Cell 2007; 131: 842–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee H, Ratajczak MZ . Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp (Warsz) 2009; 57: 269–278.

    Article  CAS  Google Scholar 

  3. Kassirer M, Zeltser D, Gluzman B, Leibovitz E, Goldberg Y, Roth A et al. The appearance of L-selectin(low) polymorphonuclear leukocytes in the circulating pool of peripheral blood during myocardial infarction correlates with neutrophilia and with the size of the infarct. Clin Cardiol 1999; 22: 721–726.

    Article  CAS  PubMed  Google Scholar 

  4. Kyne L, Hausdorff JM, Knight E, Dukas L, Azhar G, Wei JY . Neutrophilia and congestive heart failure after acute myocardial infarction. Am Heart J 2000; 139 (1 Part 1): 94–100.

    Article  CAS  PubMed  Google Scholar 

  5. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  PubMed  Google Scholar 

  6. Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T . Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002; 99: 44–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  8. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 1999; 104: 1199–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Article  PubMed  Google Scholar 

  10. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lévesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ . Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31: 109–117.

    Article  PubMed  Google Scholar 

  12. Molendijk WJ, van Oudenaren A, van Dijk H, Daha MR, Benner R . Complement split product C5a mediates the lipopolysaccharide-induced mobilization of CFU-s and haemopoietic progenitor cells, but not the mobilization induced by proteolytic enzymes. Cell Tissue Kinet 1986; 19: 407–417.

    CAS  PubMed  Google Scholar 

  13. Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25: 3093–3100.

    Article  CAS  PubMed  Google Scholar 

  14. Liu F, Poursine-Laurent J, Link DC . Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025–3031.

    CAS  PubMed  Google Scholar 

  15. Pruijt JF, Verzaal P, van Os R, de Kruijf EJ, van Schie ML, Mantovani A et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 2002; 99: 6228–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M et al. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 2009; 23: 2052–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hänel P, Andréani P, Gräler MH . Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 2007; 21: 1202–1209.

    Article  PubMed  Google Scholar 

  18. Ohkawa R, Nakamura K, Okubo S, Hosogaya S, Ozaki Y, Tozuka M et al Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Ann Clin Biochem 2008; 45 (Part 4): 356–363.

    Article  CAS  PubMed  Google Scholar 

  19. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 1998; 279: 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  20. Lee HM, Wysoczynski M, Liu R, Shin DM, Kucia M, Botto M et al. Mobilization studies in complement-deficient mice reveal that optimal AMD3100 mobilization of hematopoietic stem cells depends on complement cascade activation by AMD3100-stimulated granulocytes. Leukemia 2009; doi: 10.1038/leu.2009.271. e-pub ahead of print.

  21. Ringstad L, Andersson Nordahl E, Schmidtchen A, Malmsten M . Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21. Biophys J 2007; 92: 87–98.

    Article  CAS  PubMed  Google Scholar 

  22. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG . Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005; 309: 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  23. Seitz G, Boehmler AM, Kanz L, Möhle R . The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann N Y Acad Sci 2005; 1044: 84–89.

    Article  CAS  PubMed  Google Scholar 

  24. Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997; 90: 2939–2951.

    CAS  PubMed  Google Scholar 

  25. Chabannon C, Le Corroller AG, Viret F, Eillen C, Faucher C, Moatti JP et al. Cost-effectiveness of repeated aphereses in poor mobilizers undergoing high-dose chemotherapy and autologous hematopoietic cell transplantation. Leukemia 2003; 17: 811–813.

    Article  CAS  PubMed  Google Scholar 

  26. Bellucci R, De Propris MS, Buccisano F, Lisci A, Leone G, Tabilio A et al. Modulation of VLA-4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF. Bone Marrow Transplant 1999; 23: 1–8.

    Article  CAS  PubMed  Google Scholar 

  27. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  PubMed  Google Scholar 

  28. McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–43508.

    Article  CAS  PubMed  Google Scholar 

  29. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kollet O, Dar A, Lapidot T . The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25: 51–69.

    Article  CAS  PubMed  Google Scholar 

  31. Winkler IG, Levesque JP . Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34: 996–1009.

    Article  CAS  PubMed  Google Scholar 

  32. van Pel M, van Os R, Velders GA, Hagoort H, Heegaard PM, Lindley IJ et al. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci USA 2006; 103: 1469–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999; 96: 10863–10868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRO-beta. Blood 2001; 97: 1534–1542.

    Article  CAS  PubMed  Google Scholar 

  35. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    Article  CAS  PubMed  Google Scholar 

  36. Ramirez P, Rettig MP, Uy GL, Deych E, Holt MS, Ritchey JK et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009; 114: 1340–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cramer DE, Wagner S, Li B, Liu J, Hansen R, Reca R et al. Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells 2008; 26: 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  38. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 2001; 97: 3354–3360.

    Article  CAS  PubMed  Google Scholar 

  39. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195: 1145–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kozuka T, Ishimaru F, Fujii K, Masuda K, Kaneda K, Imai T et al. Plasma stromal cell-derived factor-1 during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Bone Marrow Transplant 2003; 31: 651–654.

    Article  CAS  PubMed  Google Scholar 

  41. Cecyn KZ, Schimieguel DM, Kimura EY, Yamamoto M, Oliveira JS . Plasma levels of FL and SDF-1 and expression of FLT-3 and CXCR4 on CD34+ cells assessed pre and post hematopoietic stem cell mobilization in patients with hematologic malignancies and in healthy donors. Transfus Apher Sci 2009; 40: 159–167.

    Article  PubMed  Google Scholar 

  42. Lamming CE, Augustin L, Blackstad M, Lund TC, Hebbel RP, Verfaillie CM . Spontaneous circulation of myeloid–lymphoid-initiating cells and SCID-repopulating cells in sickle cell crisis. J Clin Invest 2003; 111: 811–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei SH, Rosen H, Matheu MP, Sanna MG, Wang SK, Jo E et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 2005; 6: 1228–1235.

    Article  CAS  PubMed  Google Scholar 

  44. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007; 316: 295–298.

    Article  CAS  PubMed  Google Scholar 

  45. Lynch KR . Lysophospholipid receptor nomenclature. Biochim Biophys Acta 2002; 1582: 70–71.

    Article  CAS  PubMed  Google Scholar 

  46. Sanchez T, Hla T . Structural and functional characteristics of S1P receptors. J Cell Biochem 2004; 92: 913–922.

    Article  CAS  PubMed  Google Scholar 

  47. Rivera J, Proia RL, Olivera A . The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 2008; 8: 753–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sainz J, Sata M . CXCR4, a key modulator of vascular progenitor cells. Arterioscler Thromb Vasc Biol 2007; 27: 263–265.

    Article  CAS  PubMed  Google Scholar 

  49. Bessler M, Hiken J . The pathophysiology of disease in patients with paroxysmal nocturnal hemoglobinuria. Hematology Am Soc Hematol Educ Program 2008, 104–110.

  50. Sensken SC, Bode C, Gräler MH . Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. J Pharmacol Exp Ther 2009; 328: 963–969.

    Article  CAS  PubMed  Google Scholar 

  51. Jalili A, Shirvaikar N, Marquez-Curtis N, Qiu Y, Korol Ch, Lee H et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 2010; doi: 10.1016/j.exphem.2010.02.002. e-pub ahead of print.

Download references

Acknowledgements

This work was supported by NIH Grants R01 CA106281 and R01 DK074720, and Stella and Henry Endowment and European Union structural funds, Innovative Economy Operational Program POIG.01.01.02-00-109/09-00 to MZR and NIH 1RC1 HL099447 to MJL and CBS/CIHR XE00025 grant to A.J.-W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajczak, M., Lee, H., Wysoczynski, M. et al. Novel insight into stem cell mobilization-Plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24, 976–985 (2010). https://doi.org/10.1038/leu.2010.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.53

Keywords

This article is cited by

Search

Quick links